Influence of carbon nanotubes on the properties of friction composite materials

Carbon nanotubes have a lot of applications in mechanical fields. This is because nanomaterials have many superior mechanical properties such as very high strength-to-weight ratio, high modulus-to-weight ratio, high corrosion resistance, and super intelligence properties, which make them as smart ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 2020-07, Vol.54 (16), p.2101-2111
Hauptverfasser: EL-kashif, Emad F, Esmail, Shaimaa A, Elkady, Omayma AM, Azzam, BS, Khattab, Ali A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanotubes have a lot of applications in mechanical fields. This is because nanomaterials have many superior mechanical properties such as very high strength-to-weight ratio, high modulus-to-weight ratio, high corrosion resistance, and super intelligence properties, which make them as smart materials. One of these attractive applications is the use of carbon nanotubes in vehicle brake friction material. Therefore, the fabrication and testing processes of these nanomaterials should be performed carefully to evaluate their mechanical, tribological, and noise properties. In this paper, friction material mixed with carbon nanotubes have been fabricated with different carbon nanotube contents and the same fabrication parameters. The carbon nanotubes have been produced using the conventional submerged arc discharge technique. The produced friction materials have been cut into pieces with standard sizes and then tested mechanically and tribologically. The results of tests have illustrated that the addition of carbon nanotubes into the friction materials could improve their mechanical properties (hardness, strength, and modulus) and also could enhance their tribological properties (wear rate and friction coefficient). Moreover, the tests showed that the presence of carbon nanotubes in friction materials could reduce the noise, vibration of the friction materials, and reduce the temperature rise due to the effect of friction, which means that the carbon nanotubes could raise the thermal conductivity of friction material, while the friction coefficient has stayed within the allowable standard limits (0.35–0.45). Surface morphology shows that the presence of carbon nanotubes in the friction materials could help to avoid surface friction cracks or fins within the normal operating conditions. The good combination of mechanical and tribological properties was obtained at 0.5% carbon nanotubes.
ISSN:0021-9983
1530-793X
DOI:10.1177/0021998319891772