Implementing deformation, damage, and failure in an orthotropic plastic material model
Theoretical and implementation details of an orthotropic plasticity model are presented. The model is comprised of three sub-models dealing with elastic and inelastic deformations, damage, and failure. The input to the three sub-models involves tabulated data that can be obtained from laboratory and...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2020-02, Vol.54 (4), p.463-484 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical and implementation details of an orthotropic plasticity model are presented. The model is comprised of three sub-models dealing with elastic and inelastic deformations, damage, and failure. The input to the three sub-models involves tabulated data that can be obtained from laboratory and/or virtual testing. In this article, the focus is on the development of the failure sub-model and its links to the other components. Details of how the user-selected failure criterion is used, and what steps are implemented post-failure are presented. The well-known Puck failure criterion is used in the numerical examples. Three validation tests are used to illustrate the strengths and weaknesses of the failure sub-model—10°, 15°, and 30° off-axis tests, a stacked-ply test carried out at room temperature under quasi-static loading, and finally, a high-speed impact test. Results indicate that while the deformation and damage sub-models give reasonably accurate results, the failure predictions are a huge challenge especially for high-speed impact tests. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998319865006 |