Failure simulations of open-hole IM7/977-3 coupons subjected to fatigue loading using Autodesk Helius PFA
Finite element simulations of three laminates in open-hole configuration subjected to constant amplitude tension–tension fatigue loading are investigated as part of the Damage Tolerant Design Principles program organized by the Air Force Research Laboratory. All coupons were made from unidirectional...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2017-06, Vol.51 (15), p.2119-2129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finite element simulations of three laminates in open-hole configuration subjected to constant amplitude tension–tension fatigue loading are investigated as part of the Damage Tolerant Design Principles program organized by the Air Force Research Laboratory. All coupons were made from unidirectional IM7/977-3 plies, which are composed of intermediate modulus carbon fibers and a toughened epoxy matrix. Government furnished experimental data from an assortment of fatigue loaded unnotched coupons were used to characterize the behavior of the composite material in the simulations. The commercial software Autodesk Helius PFA was used to model the non-linear response of the material. Blind simulations of coupon stiffness and damage at several cycle numbers and residual coupon tensile and compressive strengths are benchmarked against experimental measurements and X-rays. Upon review of the experimental results, a second round of simulations was performed where the modeling strategy was updated to improve correlation to experiment. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998316669579 |