Probabilistic forecast of low-level wind shear over Jeju international airport using non-homogeneous regression model

Ensemble verification of low-level wind shear (LLWS) is an important issue in airplane landing operation and management. However, there have been few studies on the probabilistic forecasts of LLWS obtained from ensemble prediction system. In this study, we analyzed a reliability analysis to verify L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical engineering & education 2021-02
Hauptverfasser: Lee, Young-Gon, Kim, Chansoo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ensemble verification of low-level wind shear (LLWS) is an important issue in airplane landing operation and management. However, there have been few studies on the probabilistic forecasts of LLWS obtained from ensemble prediction system. In this study, we analyzed a reliability analysis to verify LLWS ensemble member forecasts and observation based on the limited grid points around Jeju International Airport in Jeju. Homogeneous and non-homogeneous regression models were used to reduce the bias and dispersion existing ensemble prediction system and to provide probabilistic forecast. Prior to applying probabilistic forecast model, reliability analysis was conducted by using rank histogram to identify the statistical consistency of LLWS ensemble forecasts and corresponding observations. Based on the results of our study, we found that LLWS ensemble forecasts had a consistent positive bias, indicating over-forecasting, and were under-dispersed for all seasons. To correct such biases, homogeneous regression and non-homogeneous regressions as EMOS (Ensemble Model Output Statistics) and EMOS exchangeable model by assuming exchangeable ensemble members were applied. The prediction skills of the methods were compared by the mean absolute error and continuous ranked probability score. We found that the prediction skills of probabilistic forecasts of EMOS exchangeable model were superior to the bias-corrected forecasts in terms of deterministic prediction.
ISSN:0020-7209
2050-4578
DOI:10.1177/0020720921997066