ON SOME SEMILINEAR ELLIPTIC PROBLEMS WITH SINGULAR POTENTIALS INVOLVING SYMMETRY
This paper deals with the existence and multiplicity of solutions for a class of semilinear elliptic problems of the form { − Δ u = u = μ | x | 2 u + f ( x , u ) 0 in on Ω , ∂ Ω , where Ω = Ω1× Ω2⊂ ℝ N (N≧ 5) is a bounded domain having cylindrical symmetry, Ω1⊂ ℝ m is a bounded regular domain and Ω2...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2011-04, Vol.15 (2), p.623-631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the existence and multiplicity of solutions for a class of semilinear elliptic problems of the form
{
−
Δ
u
=
u
=
μ
|
x
|
2
u
+
f
(
x
,
u
)
0
in
on
Ω
,
∂
Ω
,
where Ω = Ω1× Ω2⊂ ℝ
N
(N≧ 5) is a bounded domain having cylindrical symmetry, Ω1⊂ ℝ
m
is a bounded regular domain and Ω2is ak-dimensional ball of radiusR, centered in the origin andm+k=N, andm≧ 2,k≧ 3,
0
≦
μ
<
μ
*
=
(
N
−
2
2
)
2
. The proofs rely essentially on the critical point theory tools combined with the Hardy inequality.
2000Mathematics Subject Classification: 35J65, 35J20.
Key words and phrases: Semilinear elliptic problems, Singular potentials, Symmetry, Ekeland's variational principle, Mountain pass theorem. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/twjm/1500406225 |