A Short Derivation for Turán Numbers of Paths
This paper gives a short derivation for a result by Faudree and Schelp that the Turán number ex(n; Pk+1) of a path of k +1 vertices is equal to q ( 2 k ) + ( 2 r ) , where n = qk + r and 0 ≤ r < k, with the set EX(n; Pk+1) of extremal graphs determined.
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2018-02, Vol.22 (1), p.17-21 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper gives a short derivation for a result by Faudree and Schelp that the Turán number ex(n; Pk+1) of a path of k +1 vertices is equal to
q
(
2
k
)
+
(
2
r
)
, where n = qk + r and 0 ≤ r < k, with the set EX(n; Pk+1) of extremal graphs determined. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm/8101 |