A Short Derivation for Turán Numbers of Paths

This paper gives a short derivation for a result by Faudree and Schelp that the Turán number ex(n; Pk+1) of a path of k +1 vertices is equal to q ( 2 k ) + ( 2 r ) , where n = qk + r and 0 ≤ r < k, with the set EX(n; Pk+1) of extremal graphs determined.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2018-02, Vol.22 (1), p.17-21
1. Verfasser: Chang, Gerard Jennhwa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper gives a short derivation for a result by Faudree and Schelp that the Turán number ex(n; Pk+1) of a path of k +1 vertices is equal to q ( 2 k ) + ( 2 r ) , where n = qk + r and 0 ≤ r < k, with the set EX(n; Pk+1) of extremal graphs determined.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm/8101