On a Higher-order Reaction-diffusion Equation with a Special Medium Void via Potential Well Method
Let d ∈ {1, 2, 3, . . .} and Ω ⊂ ℝ d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem u t | x | 4 + Δ 2 u = k ( t ) | u | p - 1 u , ( x , t ) ∈ Ω × ( 0 , T ) , u ( x , t ) = ∂ u ∂ ν ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) , x ∈...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2023-02, Vol.27 (1), p.53-79 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let d ∈ {1, 2, 3, . . .} and Ω ⊂ ℝ
d
be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem
u
t
|
x
|
4
+
Δ
2
u
=
k
(
t
)
|
u
|
p
-
1
u
,
(
x
,
t
)
∈
Ω
×
(
0
,
T
)
,
u
(
x
,
t
)
=
∂
u
∂
ν
(
x
,
t
)
=
0
,
(
x
,
t
)
∈
∂
Ω
×
(
0
,
T
)
,
u
(
x
,
0
)
=
u
0
(
x
)
,
x
∈
Ω
,
where T > 0, p ∈ (1,∞), 0 ≠ u
0 ∈
H
0
2
(Ω) and ν is the outward normal vector to ∂Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm/220703 |