Counting Lines on Quartic Surfaces
We prove the sharp bound of at most 64 lines on projective quartic surfacesS⊂ ℙ3(ℂ) (resp. affine quarticsS⊂ ℂ3) that are not ruled by lines. We study configurations of lines on certain non-K3 surfaces of degree four and give various examples of singular quartics with many lines. 2010Mathematics Sub...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2016-08, Vol.20 (4), p.769-785 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the sharp bound of at most 64 lines on projective quartic surfacesS⊂ ℙ3(ℂ) (resp. affine quarticsS⊂ ℂ3) that are not ruled by lines. We study configurations of lines on certain non-K3 surfaces of degree four and give various examples of singular quartics with many lines.
2010Mathematics Subject Classification.Primary: 14J25, 14N25; Secondary: 14N20, 14J70.
Key words and phrases.Line, Quartic surface, Non-ADE singularity. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.20.2016.7135 |