An Evolutionary Property of the Bifurcation Curves for a Positone Problem with Cubic Nonlinearity
We study an evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity { u ″ ( x ) + λ f ( u ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , f ( u ) = − ε u 3 + σ u 2 + τ u + ρ , where λ > 0 is a bifurcation parameters,ε> 0 is an evolution parameter, a...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2016-06, Vol.20 (3), p.639-661 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study an evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity
{
u
″
(
x
)
+
λ
f
(
u
)
=
0
,
−
1
<
x
<
1
,
u
(
−
1
)
=
u
(
1
)
=
0
,
f
(
u
)
=
−
ε
u
3
+
σ
u
2
+
τ
u
+
ρ
,
where λ > 0 is a bifurcation parameters,ε> 0 is an evolution parameter, andσ, ρ> 0,τ≥ 0 are constants. In addition, we improve lower and upper bounds of the critical bifurcation valueε̃ of the problem.
2010Mathematics Subject Classification. 34B18, 74G35.
Key words and phrases. Positive solution, Exact multiplicity, Turning point, S-shaped bifurcation curve. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.20.2016.6563 |