An Evolutionary Property of the Bifurcation Curves for a Positone Problem with Cubic Nonlinearity

We study an evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity { u ″ ( x ) + λ f ( u ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , f ( u ) = − ε u 3 + σ u 2 + τ u + ρ , where λ > 0 is a bifurcation parameters,ε> 0 is an evolution parameter, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2016-06, Vol.20 (3), p.639-661
Hauptverfasser: Huang, Shao-Yuan, Wang, Shin-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity { u ″ ( x ) + λ f ( u ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , f ( u ) = − ε u 3 + σ u 2 + τ u + ρ , where λ > 0 is a bifurcation parameters,ε> 0 is an evolution parameter, andσ, ρ> 0,τ≥ 0 are constants. In addition, we improve lower and upper bounds of the critical bifurcation valueε̃ of the problem. 2010Mathematics Subject Classification. 34B18, 74G35. Key words and phrases. Positive solution, Exact multiplicity, Turning point, S-shaped bifurcation curve.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm.20.2016.6563