EXCEPTIONAL SETS IN WARING’S PROBLEM: TWO SQUARES, TWO CUBES AND TWO SIXTH POWERS
LetR(n) denote the number of representations of a large positive integernas the sum of two squares, two cubes and two sixth powers. In this paper, it is proved that the anticipated asymptotic formula ofR(n) fails for at mostO((logX)2+ε ) positive integers not exceedingX. This is an improvement of T....
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2015-10, Vol.19 (5), p.1359-1368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetR(n) denote the number of representations of a large positive integernas the sum of two squares, two cubes and two sixth powers. In this paper, it is proved that the anticipated asymptotic formula ofR(n) fails for at mostO((logX)2+ε
) positive integers not exceedingX. This is an improvement of T. D. Wooley’s result which requiresO((logX)3+ε
).
2010Mathematics Subject Classification: 11P05, 11P55, 11N37.
Key words and phrases: Waring’s problem, Hardy-Littlewood method, Exceptional sets, Asymptotic formula. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.19.2015.5628 |