EXCEPTIONAL SETS IN WARING’S PROBLEM: TWO SQUARES, TWO CUBES AND TWO SIXTH POWERS

LetR(n) denote the number of representations of a large positive integernas the sum of two squares, two cubes and two sixth powers. In this paper, it is proved that the anticipated asymptotic formula ofR(n) fails for at mostO((logX)2+ε ) positive integers not exceedingX. This is an improvement of T....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taiwanese journal of mathematics 2015-10, Vol.19 (5), p.1359-1368
Hauptverfasser: Lü, Xiaodong, Mu, Quanwu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LetR(n) denote the number of representations of a large positive integernas the sum of two squares, two cubes and two sixth powers. In this paper, it is proved that the anticipated asymptotic formula ofR(n) fails for at mostO((logX)2+ε ) positive integers not exceedingX. This is an improvement of T. D. Wooley’s result which requiresO((logX)3+ε ). 2010Mathematics Subject Classification: 11P05, 11P55, 11N37. Key words and phrases: Waring’s problem, Hardy-Littlewood method, Exceptional sets, Asymptotic formula.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm.19.2015.5628