COMPACTNESS OF THE COMMUTATOR OF BILINEAR FOURIER MULTIPLIER OPERATOR
Letb 1,b 2∈ CMO(ℝ n ) andΤσ be the bilinear Fourier multiplier operator with associated multiplierσsatisfies the Sobolev regularity that sup κ ∈ ℤ ‖ σ κ ‖ W s 1 , s 2 ( ℝ 2 n ) < ∞ for somes 1,s 2∈ (n/2,n]. In this paper, it is proved that the commutator defined by T σ , b → ( f 1 , f 2 ) ( x ) =...
Gespeichert in:
Veröffentlicht in: | Taiwanese journal of mathematics 2014-04, Vol.18 (2), p.661-675 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Letb
1,b
2∈ CMO(ℝ
n
) andΤσ
be the bilinear Fourier multiplier operator with associated multiplierσsatisfies the Sobolev regularity that
sup
κ
∈
ℤ
‖
σ
κ
‖
W
s
1
,
s
2
(
ℝ
2
n
)
<
∞
for somes
1,s
2∈ (n/2,n]. In this paper, it is proved that the commutator defined by
T
σ
,
b
→
(
f
1
,
f
2
)
(
x
)
=
b
1
(
x
)
T
σ
(
f
1
,
f
2
)
(
x
)
−
T
σ
(
b
1
,
f
1
,
f
2
)
(
x
)
+
b
2
(
x
)
T
σ
(
f
1
,
f
2
)
(
x
)
−
T
σ
(
f
1
,
b
2
f
2
)
(
x
)
is a compact operator from
L
p
1
(
ℝ
n
)
×
L
p
2
(
ℝ
n
)
toLp
(ℝ
n
) whenpk
∈ (n/sk
, ∞) (k= 1, 2),p∈ (1, ∞) with 1/p= 1/p
1+ l/p
2.
2010Mathematics Subject Classification: 42B15, 42B20.
Key words and phrases: Bilinear Fourier multiplier, Commutator, CMO(ℝ
n
), Compact operator. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.18.2014.3676 |