Recruitment and Derecruitment During Acute Respiratory Failure . An Experimental Study

We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2001-07, Vol.164 (1), p.122-130
Hauptverfasser: PELOSI, PAOLO, GOLDNER, MARI, McKIBBEN, ANDREW, ADAMS, ALEX, ECCHER, GIUDITTA, CAIRONI, PIETRO, LOSAPPIO, SABINA, GATTINONI, LUCIANO, MARINI, JOHN J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost, middle, and most dependent lung regions. Each dog was studied at positive end-expiratory pressure (PEEP) of 5 and 15 cm H2O and three levels of tidal volume (VT; low, medium, and high). For each PEEP-VT combination, we obtained a computed tomographic (CT) scan at end-inspiration and end-expiration. The variations of Ppl and Pes pressures were correlated (r = 0.86 +/- 0.07, p < 0.0001), as was the vertical gradient of transpulmonary (PL) and superimposed pressure (r = 0.92, p < 0.0001). Recruitment proceeded continuously along the entire volume-pressure curve. Estimated threshold opening pressures were normally distributed (mode = 20 to 25 cm H2O). The amount of end-expiratory collapse at the same PEEP and PL was significantly lower when ventilation was performed at high VT. End-inspiratory and end-expiratory collapse were highly correlated (r = 0.86, p < 0.0001), suggesting that as more tissue is recruited at end-inspiration, more remains recruited at end-expiration. When superimposed pressure exceeded applied airway pressure (Paw), collapse significantly increased.
ISSN:1073-449X
1535-4970
DOI:10.1164/ajrccm.164.1.2007010