Wetting and adhesion of water-borne printing inks on surface-modified polyolefins

Polyolefin films were surface-modified by different methods to improve the wetting and adhesion of water-borne printing inks. Polyethylene (PE) films were treated with corona at various energy levels. Surface-modified PE films were characterized by contact angle measurements and electron spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of adhesion science and technology 1990-01, Vol.4 (1), p.817-827
Hauptverfasser: Gatenholm, Paul, Bonnerup, Chris, Wallstrom, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyolefin films were surface-modified by different methods to improve the wetting and adhesion of water-borne printing inks. Polyethylene (PE) films were treated with corona at various energy levels. Surface-modified PE films were characterized by contact angle measurements and electron spectroscopy for chemical analysis (ESCA). Good wetting was already achieved with treatment at a lower energy level. Various degrees of adhesion were obtained at various degrees of treatment. A hydrophilic monomer, 2-hydroxyethylmethacrylate (HEMA), was polymerized onto the surfaces of polypropylene (PP) with radiation-induced grafting, which was carried out at two different radiation doses. In both cases, a thick, visible layer of polyHEMA was formed on the surface of PP, and satisfactory wetting was already achieved at lower radiation doses. Scanning electron microscopy (SEM) showed that different degrees of roughness were achieved at various radiation doses. Like the case of corona-treated PE, different degrees of adhesion were obtained at different degrees of surface treatment. This study shows that improved wetting alone is not satisfactory for good practical adhesion', regardless of the surface modification method used.
ISSN:0169-4243
1568-5616
DOI:10.1163/156856190X00702