Weak Identification in Low-Dimensional Factor Models with One or Two Factors

This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 2024-03, p.1-45
1. Verfasser: Cox, Gregory Fletcher
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 1
container_title The review of economics and statistics
container_volume
creator Cox, Gregory Fletcher
description This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly identified parameters from strongly identified parameters. The reparameterizations in this paper make plug-in tests available for subvector hypotheses in low-dimensional factor models with one or two factors. Simulations show that the plug-in tests are less conservative than identification-robust tests that use the original parameterization. An empirical application to a factor model of parental investments in children is included.
doi_str_mv 10.1162/rest_a_01441
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1162_rest_a_01441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1162_rest_a_01441</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1162_rest_a_014413</originalsourceid><addsrcrecordid>eNqVjr0KwjAURoMoWH82HyAPYPVe0yrOalGouBQcQ6gpRmsiuYHi21vBwdXpg_Od4TA2QZghLhdzrylIJQGTBDsswlRAvMZk0WURgEjiZSrSPhsQ3QAAVygilp-1uvPDRdtgKlOqYJzlxvLcNfHWPLSlFqiaZ6oMzvOju-iaeGPClZ-s5i0qGvd9acR6lapJj787ZNNsV2z2cekdkdeVfHrzUP4lEeSnWP4Wiz_1N6vMSeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak Identification in Low-Dimensional Factor Models with One or Two Factors</title><source>MIT Press Journals</source><creator>Cox, Gregory Fletcher</creator><creatorcontrib>Cox, Gregory Fletcher</creatorcontrib><description>This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly identified parameters from strongly identified parameters. The reparameterizations in this paper make plug-in tests available for subvector hypotheses in low-dimensional factor models with one or two factors. Simulations show that the plug-in tests are less conservative than identification-robust tests that use the original parameterization. An empirical application to a factor model of parental investments in children is included.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.1162/rest_a_01441</identifier><language>eng</language><ispartof>The review of economics and statistics, 2024-03, p.1-45</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Cox, Gregory Fletcher</creatorcontrib><title>Weak Identification in Low-Dimensional Factor Models with One or Two Factors</title><title>The review of economics and statistics</title><description>This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly identified parameters from strongly identified parameters. The reparameterizations in this paper make plug-in tests available for subvector hypotheses in low-dimensional factor models with one or two factors. Simulations show that the plug-in tests are less conservative than identification-robust tests that use the original parameterization. An empirical application to a factor model of parental investments in children is included.</description><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjr0KwjAURoMoWH82HyAPYPVe0yrOalGouBQcQ6gpRmsiuYHi21vBwdXpg_Od4TA2QZghLhdzrylIJQGTBDsswlRAvMZk0WURgEjiZSrSPhsQ3QAAVygilp-1uvPDRdtgKlOqYJzlxvLcNfHWPLSlFqiaZ6oMzvOju-iaeGPClZ-s5i0qGvd9acR6lapJj787ZNNsV2z2cekdkdeVfHrzUP4lEeSnWP4Wiz_1N6vMSeI</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Cox, Gregory Fletcher</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240318</creationdate><title>Weak Identification in Low-Dimensional Factor Models with One or Two Factors</title><author>Cox, Gregory Fletcher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1162_rest_a_014413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Gregory Fletcher</creatorcontrib><collection>CrossRef</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Gregory Fletcher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Identification in Low-Dimensional Factor Models with One or Two Factors</atitle><jtitle>The review of economics and statistics</jtitle><date>2024-03-18</date><risdate>2024</risdate><spage>1</spage><epage>45</epage><pages>1-45</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><abstract>This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly identified parameters from strongly identified parameters. The reparameterizations in this paper make plug-in tests available for subvector hypotheses in low-dimensional factor models with one or two factors. Simulations show that the plug-in tests are less conservative than identification-robust tests that use the original parameterization. An empirical application to a factor model of parental investments in children is included.</abstract><doi>10.1162/rest_a_01441</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-6535
ispartof The review of economics and statistics, 2024-03, p.1-45
issn 0034-6535
1530-9142
language eng
recordid cdi_crossref_primary_10_1162_rest_a_01441
source MIT Press Journals
title Weak Identification in Low-Dimensional Factor Models with One or Two Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Identification%20in%20Low-Dimensional%20Factor%20Models%20with%20One%20or%20Two%20Factors&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Cox,%20Gregory%20Fletcher&rft.date=2024-03-18&rft.spage=1&rft.epage=45&rft.pages=1-45&rft.issn=0034-6535&rft.eissn=1530-9142&rft_id=info:doi/10.1162/rest_a_01441&rft_dat=%3Ccrossref%3E10_1162_rest_a_01441%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true