Weak Identification in Low-Dimensional Factor Models with One or Two Factors
This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly ide...
Gespeichert in:
Veröffentlicht in: | The review of economics and statistics 2024-03, p.1-45 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes how to reparameterize low-dimensional factor models with one or two factors to fit weak identification theory developed for generalized method of moments models. Some identification-robust tests, here called “plug-in” tests, require a reparameterization to distinguish weakly identified parameters from strongly identified parameters. The reparameterizations in this paper make plug-in tests available for subvector hypotheses in low-dimensional factor models with one or two factors. Simulations show that the plug-in tests are less conservative than identification-robust tests that use the original parameterization. An empirical application to a factor model of parental investments in children is included. |
---|---|
ISSN: | 0034-6535 1530-9142 |
DOI: | 10.1162/rest_a_01441 |