Difference-in-Differences Estimators of Intertemporal Treatment Effects

We study treatment-effect estimation using panel data. The treatment may be non-binary, non-absorbing, and the outcome may be affected by treatment lags. We make a parallel-trends assumption, and propose event-study estimators of the effect of being exposed to a weakly higher treatment dose for ℓ. p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 2024-02, p.1-45
Hauptverfasser: de Chaisemartin, Clément, D'Haultfœuille, Xavier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study treatment-effect estimation using panel data. The treatment may be non-binary, non-absorbing, and the outcome may be affected by treatment lags. We make a parallel-trends assumption, and propose event-study estimators of the effect of being exposed to a weakly higher treatment dose for ℓ. periods. We also propose normalized estimators, that estimate a weighted average of the effects of the current treatment and its lags. We also analyze commonly-used two-way-fixed-effects regressions. Unlike our estimators, they can be biased in the presence of heterogeneous treatment effects. A local-projection version of those regressions is biased even with homogeneous effects.
ISSN:0034-6535
1530-9142
DOI:10.1162/rest_a_01414