Test-retest reliability of the human connectome: An OPM-MEG study
Magnetoencephalography with optically pumped magnetometers (OPM-MEG) offers a new way to record electrophysiological brain function, with significant advantages over conventional MEG, including adaptability to head shape/size, free movement during scanning, increased signal amplitude, and no relianc...
Gespeichert in:
Veröffentlicht in: | Imaging neuroscience (Cambridge, Mass.) Mass.), 2023-10, Vol.1, p.1-20 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetoencephalography with optically pumped magnetometers (OPM-MEG) offers a new way to record electrophysiological brain function, with significant advantages over conventional MEG, including adaptability to head shape/size, free movement during scanning, increased signal amplitude, and no reliance on cryogenics. However, OPM-MEG remains in its infancy, with significant questions to be answered regarding the optimal system design. Here, we present an open-source dataset acquired using a newly constructed OPM-MEG system with a triaxial sensor design, 168 channels, OPM-optimised magnetic shielding, and active background field control. We measure the test-retest reliability of the human connectome, which was computed using amplitude envelope correlation to measure whole-brain (parcellated) functional connectivity, in 10 individuals while they watch a 600 s move clip. Our results show high repeatability between experimental runs at the group level, with a correlation coefficient of 0.81 in the θ, 0.93 in α, and 0.94 in β frequency ranges. At the individual subject level, we found marked differences between individuals, but high within-subject robustness (correlations of 0.56 ± 0.25, 0.72 ± 0.15, and 0.78 ± 0.13 in α, θ, and β respectively). These results compare well to previous findings using conventional MEG and show that OPM-MEG is a viable way to robustly characterise connectivity. |
---|---|
ISSN: | 2837-6056 2837-6056 |
DOI: | 10.1162/imag_a_00020 |