Test-retest reliability of the human connectome: An OPM-MEG study

Magnetoencephalography with optically pumped magnetometers (OPM-MEG) offers a new way to record electrophysiological brain function, with significant advantages over conventional MEG, including adaptability to head shape/size, free movement during scanning, increased signal amplitude, and no relianc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Imaging neuroscience (Cambridge, Mass.) Mass.), 2023-10, Vol.1, p.1-20
Hauptverfasser: Rier, Lukas, Michelmann, Sebastian, Ritz, Harrison, Shah, Vishal, Hill, Ryan M., Osborne, James, Doyle, Cody, Holmes, Niall, Bowtell, Richard, Brookes, Matthew J., Norman, Kenneth A., Hasson, Uri, Cohen, Jonathan D., Boto, Elena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetoencephalography with optically pumped magnetometers (OPM-MEG) offers a new way to record electrophysiological brain function, with significant advantages over conventional MEG, including adaptability to head shape/size, free movement during scanning, increased signal amplitude, and no reliance on cryogenics. However, OPM-MEG remains in its infancy, with significant questions to be answered regarding the optimal system design. Here, we present an open-source dataset acquired using a newly constructed OPM-MEG system with a triaxial sensor design, 168 channels, OPM-optimised magnetic shielding, and active background field control. We measure the test-retest reliability of the human connectome, which was computed using amplitude envelope correlation to measure whole-brain (parcellated) functional connectivity, in 10 individuals while they watch a 600 s move clip. Our results show high repeatability between experimental runs at the group level, with a correlation coefficient of 0.81 in the θ, 0.93 in α, and 0.94 in β frequency ranges. At the individual subject level, we found marked differences between individuals, but high within-subject robustness (correlations of 0.56 ± 0.25, 0.72 ± 0.15, and 0.78 ± 0.13 in α, θ, and β respectively). These results compare well to previous findings using conventional MEG and show that OPM-MEG is a viable way to robustly characterise connectivity.
ISSN:2837-6056
2837-6056
DOI:10.1162/imag_a_00020