A Simple Derivation of a Bound on the Perceptron Margin Using Singular Value Decomposition

The perceptron is a simple supervised algorithm to train a linear classifier that has been analyzed and used extensively. The classifier separates the data into two groups using a decision hyperplane, with the margin between the data and the hyperplane determining the classifier's ability to ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2011-08, Vol.23 (8), p.1935-1943
Hauptverfasser: Barak, Omri, Rigotti, Mattia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perceptron is a simple supervised algorithm to train a linear classifier that has been analyzed and used extensively. The classifier separates the data into two groups using a decision hyperplane, with the margin between the data and the hyperplane determining the classifier's ability to generalize and its robustness to input noise. Exact results for the maximal size of the separating margin are known for specific input distributions, and bounds exist for arbitrary distributions, but both rely on lengthy statistical mechanics calculations carried out in the limit of infinite input size. Here we present a short analysis of perceptron classification using singular value decomposition. We provide a simple derivation of a lower bound on the margin and an explicit formula for the perceptron weights that converges to the optimal result for large separating margins.
ISSN:0899-7667
1530-888X
DOI:10.1162/NECO_a_00152