Platelets from flowing blood attach to the inflammatory chemokine CXCL16 expressed in the endothelium of the human vessel wall

Summary Endothelial chemokine CXC motif ligand 16 (CXCL16) expression is associated with atherosclerosis, while platelets, particularly those attaching to atherosclerotic plaque, contribute to all stages of athero-sclerotic disease. This investigation was designed to examine the role of CXCL16 in ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis and haemostasis 2015-08, Vol.113 (2), p.297-312
Hauptverfasser: Santos, Sascha Meyer dos, Blankenbach, Kira, Scholich, Klaus, Dörr, Angela, Monsefi, Nadejda, Keese, Michael, Linke, Bona, Deckmyn, Hans, Nelson, Karen, Harder, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Endothelial chemokine CXC motif ligand 16 (CXCL16) expression is associated with atherosclerosis, while platelets, particularly those attaching to atherosclerotic plaque, contribute to all stages of athero-sclerotic disease. This investigation was designed to examine the role of CXCL16 in capturing platelets from flowing blood. CXCL16 was expressed in human atherosclerotic plaques, and lesion severity in human carotid endarterectomy specimens was positively correlated with CXCL16 levels. CXCL16 expression in plaques was co-localised with platelets deposited to the endothelium. Immobilised CXCL16 promoted CXCR6-dependent platelet adhesion to the human vessel wall, endothelial cells and von Willebrand factor during physiologic flow. At low shear, immobilised CXCL16 captured platelets from flowing blood. It also induced irreversible platelet aggregation and a rise in intra-platelet calcium levels. These results demonstrate that endothelial CXCL16’s action on platelets is not only limited to platelet activation, but that immobilised CXCL16 also acts as a potent novel platelet adhesion ligand, inducing platelet adhesion to the human vessel wall.
ISSN:0340-6245
2567-689X
DOI:10.1160/TH14-11-0911