Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-κB activation and adhesion molecule expression

Summary The regulated expression of adhesion molecules on the surface of endothelial cells is a key process in the pathogenesis of inflammation. The saponin astragaloside IV (AS-IV), a 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcycloastragenol purified from the Chinese medical herb Astragalus membr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis and haemostasis 2003, Vol.90 (5), p.904-914
Hauptverfasser: Zhang, Wei-Jian, Hufnagl, Peter, Binder, Bernd R., Wojta, Johann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The regulated expression of adhesion molecules on the surface of endothelial cells is a key process in the pathogenesis of inflammation. The saponin astragaloside IV (AS-IV), a 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcycloastragenol purified from the Chinese medical herb Astragalus membranaceus (Fisch) Bge.has been shown to have anti-inflammatory effects in vivo. In this study we have investigated the effect of AS-IV on cytokine-and LPS-stimulated expression of adhesion molecules in and leukocyte adhesion to endothelial cells. We have demonstrated that AS-IV significantly reduced the adhesion promoting activity of LPS-stimulated HUVECs for polymorph-nuclear leukocytes (PMNs) and the monocytic cell line THP-1. Furthermore, by using specific cell ELISAs we could show that AS-IV decreased the LPS-induced expression of E-selectin and VCAM-1 on the surface of HUVECs in a dose and time dependent manner, whereas the expression of ICAM-1 was not affected by AS-IV. AS-IV also inhibits TNFβ-induced VCAM-1 expression. The saponin octyl-D-glucopyranoside had no effect on the LPS-induced expression of E-selectin and VCAM-1 excluding an unspecific detergent-like effect of AS-IV. Moreover, AS-IV significantly inhibited LPS- and TNFβ-induced specific mRNA levels for E-selectin and VCAM-1. Finally, we could show that AS-IV completely abolished LPS- and TNFα-induced nuclear translocation of NF-κB and NF-κB DNA binding activity in endothelial cells. We conclude that the ability of AS-IV to inhibit the NF-κB pathway might be one underlying mechanism contributing to its anti-inflammatory potential in vivo .
ISSN:0340-6245
2567-689X
DOI:10.1160/TH03-03-0136