Exogenous H2S Inhibits Autophagy in Unilateral Ureteral Obstruction Mouse Renal Tubule Cells by Regulating the ROS-AMPK Signaling Pathway

Abstract Background/Aims: The induction of excessive autophagy by increased levels of oxidative stress is one of the main mechanisms underlying unilateral ureteral obstruction (UUO)-induced vascular endothelial cell dysfunction. Hydrogen sulfide (H2S) has been shown to have an anti-oxidative effect,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-01, Vol.49 (6), p.2200-2213
Hauptverfasser: Chen, Qinghai, Yu, Shiliang, Zhang, Kuo, Zhang, Zuobiao, Li, Chao, Gao, Bingpeng, Zhang, Weihua, Wang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background/Aims: The induction of excessive autophagy by increased levels of oxidative stress is one of the main mechanisms underlying unilateral ureteral obstruction (UUO)-induced vascular endothelial cell dysfunction. Hydrogen sulfide (H2S) has been shown to have an anti-oxidative effect, but its mode of action on excessive autophagy in vascular endothelial cells is unclear. Methods: Surgery was used to induce UUO in male C57BL/6 mice as an in vivo model. Human renal epithelial cells (HK-2) were treated with H2O2 as an in vitro model. NaHS was used as an exogenous H2S donor. Transmission electron microscopy was applied to observe the structure of renal autophagosomes. The expression of proteins related to autophagy and apoptosis was detected by western blot analysis in vivo and in vitro. Flow cytometry (DCFH-DA) was used to examine the levels of intracellular reactive oxygen species (ROS). The terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect cell apoptosis. Compound C was used to analyze the association of AMPK with autophagy. Results: Compared with the sham group, in which the ureter was exposed but not ligated, the cell apoptosis index, number of autophagosomes, protein expression of microtubule-associated protein 1 light-chain 3 (LC3)-II/I, beclin-1, and p-AMPK/AMPK were significantly increased in the UUO group. On the other hand, p62, cystathionine β-synthase, and cystathionine γ-lyase protein expression levels and H2S concentration were significantly decreased (p < 0.05). These alterations were ameliorated by the addition of NaHS (p < 0.05). Similar results were observed in vitro. By using the AMPK inhibitor compound C, it was indicated that AMPK was involved in ROS-induced autophagy. In addition, using tissue from patients with obstructive nephropathy, excessive autophagy was observed by an increased LC3-II/LC3-I ratio. Conclusion: NaHS-treatment may exert a protective effect on mouse kidney against UUO by suppressing the ROS-AMPK pathway. ROS-AMPK-mediated autophagy may represent a promising therapeutic target for obstructive nephropathy.
ISSN:1015-8987
1421-9778
DOI:10.1159/000493824