The Role of Central Androgen Receptor Actions in Regulating the Hypothalamic-Pituitary-Ovarian Axis
The androgen receptor (AR) is expressed throughout the hypothalamic-pituitary-gonadal (HPG) axis, and findings from female global AR knockout mice confirm that AR-mediated androgen actions play important roles in regulating female reproductive function. We generated neuron-specific AR knockout mice...
Gespeichert in:
Veröffentlicht in: | Neuroendocrinology 2018-01, Vol.106 (4), p.389-400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The androgen receptor (AR) is expressed throughout the hypothalamic-pituitary-gonadal (HPG) axis, and findings from female global AR knockout mice confirm that AR-mediated androgen actions play important roles in regulating female reproductive function. We generated neuron-specific AR knockout mice (NeurARKO) to investigate the functional role of neuronal AR-mediated androgen action in regulating the female HPG axis and fertility. Relative to control females, NeurARKO females exhibited elevated luteinizing hormone (LH) levels at diestrus (p < 0.05) and a compromised serum LH response to ovariectomy and E2 priming (p < 0.01). Furthermore, NeurARKO females displayed reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus at diestrus (p < 0.05) and proestrus (p < 0.05), but elevated Kiss1 (p < 0.05) and neurokinin B (Tac2, p < 0.05) mRNA expression in the arcuate nucleus at proestrus compared to WT controls. Ovarian follicle dynamics were also altered in NeurARKO ovaries at 3 months of age, with a significant reduction in large antral follicle numbers at the proestrus stage compared to control WT ovaries (p < 0.05). Increased follicular atresia was evident in NeurARKO ovaries with a 4-fold increase in unhealthy large preantral follicles (p < 0.01). Despite the findings of aberrant neuroendocrine and ovarian characteristics in the NeurARKO females, estrous cyclicity and overall fertility were comparable between NeurARKO and WT females. In conclusion, our findings revealed that selective loss of neuronal AR actions impacts the kisspeptin/GnRH/LH cascade leading to compromised ovarian follicle dynamics. |
---|---|
ISSN: | 0028-3835 1423-0194 |
DOI: | 10.1159/000487762 |