Integrated Karyotyping of Woodland Strawberry (Fragaria vesca) with Oligopaint FISH Probes

Chromosome identification is critical for many aspects of cytogenetic research. However, for Fragaria vesca, definite identification of individual chromosomes is almost impossible because of their small size and high similarity. Here, we demonstrate that bulked oligonucleotide (oligo) probes can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2017-01, Vol.153 (3), p.158-164
Hauptverfasser: Qu, Manman, Li, Kunpeng, Han, Yanli, Chen, Lei, Li, Zongyun, Han, Yonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromosome identification is critical for many aspects of cytogenetic research. However, for Fragaria vesca, definite identification of individual chromosomes is almost impossible because of their small size and high similarity. Here, we demonstrate that bulked oligonucleotide (oligo) probes can be used as chromosome-specific DNA markers for chromosome identification in F. vesca. Oligos specific to entire pseudochromosomes in the draft genome of F. vesca were identified and synthesized as libraries. In all, we synthesized 6 oligo libraries corresponding to 6 pseudochromosomes of F. vesca. These libraries were amplified and labeled as probes for fluorescence in situ hybridization (FISH). Two rounds of multicolor FISH analysis were sequentially conducted on the same metaphase cells with each round including 3 probe libraries, which permitted simultaneous identification of all chromosomes of F. vesca. Moreover, 45S and 5S rDNA were mapped to chromosomes 1, 2, and 7, respectively. A karyotype of metaphase chromosomes was constructed, representing the first FISH-based molecular cytogenetic karyotype of F. vesca. Our study can serve as a basis for future comparative cytogenetic research through cross-species chromosome painting using bulked oligo probes and will facilitate the application of breeding technologies that rely on the identification of chromosomes in the genus Fragaria.
ISSN:1424-8581
1424-859X
DOI:10.1159/000485283