Huang Qi Huai Granules Induce Apoptosis in Acute Lymphoblastic Leukemia Cells through the Akt/FoxO1 Pathway

In recent years, a traditional Chinese medicine named Huang Qi Huai (HQH) has been frequently used in China for solid tumor therapy. However, the role of HQH on leukemia cells and its underlying mechanisms have not been elucidated. In this study, we investigated the effect of HQH on the proliferatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2016-01, Vol.38 (5), p.1803-1814
Hauptverfasser: Han, Juan, Lin, Ming, Zhou, Dongfeng, Zhang, Zhiquan, Jin, Runming, Zhou, Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, a traditional Chinese medicine named Huang Qi Huai (HQH) has been frequently used in China for solid tumor therapy. However, the role of HQH on leukemia cells and its underlying mechanisms have not been elucidated. In this study, we investigated the effect of HQH on the proliferation and apoptosis of acute lymphoblastic leukemia (ALL) cell lines. Sup-B15 and Nalm-6 cells were treated with gradient doses of HQH for 24, 48 or 72 h. Cell viability was measured using a CCK8 assay and cell cycle distribution and apoptosis levels were analyzed using flow cytometry. Western blotting was used to assess the levels of proteins associated with the apoptotic pathway. The results revealed that cell survival decreased significantly with increasing concentrations of HQH. HQH induced G2 cell-cycle arrest and cell apoptosis in a dose-dependent manner. HQH inhibited phosphorylated-Akt, phosphorylated- FoxO1 and Bcl2 expression and upregulated Bim, cleaved-caspase-3 and Bax expression in a dose-dependent manner, which suggests that HQH induces the apoptosis of ALL cells via the Akt/FoxO1 pathway. HQH is a potential complementary agent for the treatment of acute lymphoblastic leukemia.
ISSN:1015-8987
1421-9778
DOI:10.1159/000443119