Remodeling of Noncrosslinked Acellular Dermal Matrices in a Rabbit Model of Ventral Hernia Repair

Background: Bioprostheses represent a significant advance in the abdominal wall reconstruction since they become degraded until their complete elimination in the recipient organism. This study examines remodeling in the host of three noncrosslinked porcine dermal collagen biomeshes: Strattice™ (St;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European surgical research 2016-01, Vol.56 (1-2), p.32-48
Hauptverfasser: Pascual, Gemma, Sotomayor, Sandra, Adel, Farah, Pérez-Köhler, Bárbara, Rodríguez, Marta, Cifuentes, Alberto, Bellón, Juan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Bioprostheses represent a significant advance in the abdominal wall reconstruction since they become degraded until their complete elimination in the recipient organism. This study examines remodeling in the host of three noncrosslinked porcine dermal collagen biomeshes: Strattice™ (St; LifeCell Corp.), XCM Biologic® Tissue Matrix (XCM; Synthes CMF) and Protexa® (Pr; Deco Med S.R.L.). Methods: Partial ventral hernia defects created in New Zealand White rabbits were repaired using the biomeshes that were placed in an inlay, preperitoneal position. At 14 and 90 days after implantation, explants were assessed in terms of their host tissue incorporation by morphological studies, collagen gene/protein expression (quantitative real-time PCR/immunofluorescence), macrophage response (immunohistochemistry) and biomechanical strength. Results: There were no cases of mortality or infection. Among our macroscopic findings, the mesh detachment detected in one third of the Pr implants at 90 days was of note. The host tissue response to all the biomeshes was similar at both time points, with a tendency observed for their encapsulation. There were no appreciable signs of mesh degradation. The extent of host tissue infiltration and collagenization was greater for St and Pr than for XCM. Macrophages were observed in zones of inflammation and tissue infiltration inside the mesh. XCM showed a greater macrophage response at 90 days (p < 0.05). Improved tensile strength was observed for St (p < 0.05) over Pr and unrepaired defects. Conclusions:St showed the best behavior, featuring good collagenization and tensile strength while also inducing a minimal foreign body reaction.
ISSN:0014-312X
1421-9921
DOI:10.1159/000441721