The Functional Variant in the 3'UTR of PTPRT with the Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population
Background/Aims: PTPRT is an essential tumor suppressor that plays crucial roles in regulating the mechanisms of tumorigenesis. Polymorphisms in PTPRT have been reported associated with human longevity, but their association with the risk of esophageal squamous cell carcinoma (ESCC) has not been fou...
Gespeichert in:
Veröffentlicht in: | Cellular Physiology and Biochemistry 2015-05, Vol.36 (1), p.306-314 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/Aims: PTPRT is an essential tumor suppressor that plays crucial roles in regulating the mechanisms of tumorigenesis. Polymorphisms in PTPRT have been reported associated with human longevity, but their association with the risk of esophageal squamous cell carcinoma (ESCC) has not been found so far. In this study, we focused on the miRNAs associated SNPs in the 3'-UTR of PTPRT to investigate the further relationship of the SNPs with miRNAs among Chinese ESCC patients. Methods: We performed case-control study including 790 ESCC patients and 749 cancer-free controls. Genotyping, real time PCR assay, cell transfection and the dual luciferase reporter assay were used in our study. Results: We found that patients suffering from smoking exposure, drinking exposure and the history of cancer indicated to be the susceptible population by comparing with controls. Besides, SNP rs2866943 in PTPRT 3'-UTR was involved in the occurrence of ESCC by acting as a protective factor while rs6029959 acting a risk factor. SNP rs2866943 was also could be regulated by miR-218 which caused a down-regulation of PTPRT in patients with CT and TT genotype. Furthermore, the carriers of CT and TT genotype presented a small tumor size as well as the low probability of metastasis. Conclusion: Our findings have shown that the SNP rs2866943 in PTPRT 3'-UTR, through disrupting the regulatory role of miR-218 in PTPRT expression, rs2866943 in PTPRT might act as a protective factor in the pathogenesis of ESCC. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000374073 |