Ontogeny of the Electric Organs in the Electric Eel, Electrophorus electricus: Physiological, Histological, and Fine Structural Investigations

This study attempts to clarify the controversy regarding the ontogenetic origin of the main organ electrocytes in the electric eel, Electrophorus electricus. The dispute was between an earlier claimed origin from a skeletal muscle precursor [Fritsch, 1881], or from a distinct electrocyte-generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain, behavior and evolution behavior and evolution, 2014-01, Vol.84 (4), p.288-302
Hauptverfasser: Schwassmann, Horst O., Assunção, M. Ivaneide S., Kirschbaum, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study attempts to clarify the controversy regarding the ontogenetic origin of the main organ electrocytes in the electric eel, Electrophorus electricus. The dispute was between an earlier claimed origin from a skeletal muscle precursor [Fritsch, 1881], or from a distinct electrocyte-generating matrix, or germinative zone [Keynes, 1961]. We demonstrate electrocyte formation from a metamerically organized group of pre-electroblasts, splitting off the ventralmost tip of the embryonic trunk mesoderm at the moment of hatching from the egg. We show details of successive stages in the development of rows of electric plates, the electrocytes, by means of conventional histology and electron microscopy. The membrane-bound pre-electroblasts multiply rapidly and then undergo a specific mitosis where they lose their membranes and begin extensive cytoplasm production as electroblasts. Electrical activity, consisting of single and multiple pulses, was noticed in seven-day-old larvae that began to exhibit swimming movements. A separation of discharges into single pulses and trains of higher voltage pulses was seen first in 45-mm-long larvae. A lateralis imus muscle and anal fin ray muscles, implicated by earlier investigators in the formation of electrocytes, begin developing at a time in larval life when eight columns of electrocytes are already present. Axonal innervation is seen very early during electrocyte formation.
ISSN:0006-8977
1421-9743
DOI:10.1159/000367884