β3-Adrenoceptor Mediates Metabolic Protein Remodeling in a Rabbit Model of Tachypacing-Induced Atrial Fibrillation

Background: The beta 3-adrenoceptor (β3-AR) is closely associated with energy metabolism. This study aimed to explore the role of β3-AR in energy remodeling in a rabbit model of pacing-induced atrial fibrillation (AF). Methods: Rabbits with a sham-operation or pacing-induced AF were used for this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2013, Vol.32 (6), p.1631-1642
Hauptverfasser: Liu, Yixi, Geng, Jianqiang, Liu, Yutan, Li, Yue, Shen, Jingxia, Xiao, Xingping, Sheng, Li, Yang, Baofeng, Cheng, Cheping, Li, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The beta 3-adrenoceptor (β3-AR) is closely associated with energy metabolism. This study aimed to explore the role of β3-AR in energy remodeling in a rabbit model of pacing-induced atrial fibrillation (AF). Methods: Rabbits with a sham-operation or pacing-induced AF were used for this study, and the latter group was further divided into three subgroups: 1) the pacing group, 2) the β3-AR agonist (BRL37344)-treated group, and 3) the β3-AR antagonist (SR59230A)-treated group. Atrial electrogram morphology and surface ECG were used to monitor the induction of AF and atrial effective refractory period (AERP). RT-PCR and western blot (WB) were used to show alterations in β3-AR and metabolic-related protein. Results: RT-PCR and WB results showed that β3-AR was significantly upregulated in the pacing group, and that it corresponded with high AF inducibility and significantly decreased AERP 200 and ATP production in this group. Inhibition of β3-AR decreased the AF induction rate, reversed AERP 200 reduction, and restored ATP levels in the AF rabbits. Further activation of β3-AR using agonist BRL37344 exacerbated AF-induced metabolic disruption. Periodic acid Schiff (PAS) and Oil Red O staining showed β3-AR-dependent glycogen and lipid droplet accumulation in cardiac myocytes with AF. Glucose transporter-4 (GLUT-4) and CD36, key transporters of glucose and fatty acids, were downregulated in the pacing group. Expression of carnitine-palmitoyltransferase I (CPT-1), a key regulator in fatty acid metabolism, was also significantly downregulated in the pacing group. Reduced glucose transportation and fatty acid oxidation could be restored by inhibition of β3-AR. Furthermore, key regulators of metabolism, peroxisome proliferator-activated receptor-α (PPARα) and PPAR co-activator (PGC-1α) can be regulated by pharmacological intervention of the β3-AR. Conclusions: β3-AR is involved in metabolic protein remodeling in AF. PPARα/PGC-1α signaling pathway might be the relevant down-stream molecular machinery in response to AF-induced activation of β3-AR. β3-AR might be a novel target in AF treatment.
ISSN:1015-8987
1421-9778
DOI:10.1159/000356599