Comparison of Experimental Lung Injury from Acute Renal Failure with Injury due to Sepsis

Background: Acute renal failure (ARF) and acute respiratory distress syndrome (ARDS) coexist frequently, and the mortality rate of this combination is very high. It is well established that cytokines and chemokines play a major role in the pathogenesis of ARDS. In addition, heat shock proteins (HSPs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiration 2006-01, Vol.73 (6), p.815-824
Hauptverfasser: Kim, Do Jin, Park, Soo Hyun, Sheen, Mee Rie, Jeon, Un Sil, Kim, Seung Whan, Koh, Eun Suk, Woo, Seung Kyoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Acute renal failure (ARF) and acute respiratory distress syndrome (ARDS) coexist frequently, and the mortality rate of this combination is very high. It is well established that cytokines and chemokines play a major role in the pathogenesis of ARDS. In addition, heat shock proteins (HSPs) have been shown to be protective against ARDS. Objectives: The purpose of this study was to investigate the pathophysiology of ARDS in two different conditions, sepsis and ARF. Methods: We examined five different rat animal models including sham-operated control, sepsis and three ARF models induced by renal ischemia/reperfusion injury, bilateral nephrectomy or bilateral ligation of renal pedicles. We analyzed pulmonary histology, pulmonary vascular permeability, cellular infiltration, and expression of cytokines, chemokines and HSPs. Results: Like sepsis, the three forms of ARF led to ARDS, as manifested by increased pulmonary vascular permeability and histological changes consistent with ARDS. On the other hand, ARF and sepsis differed in that ARF was associated with markedly lower levels of pulmonary cellular infiltration. Furthermore, while pulmonary expression of tumor necrosis factor-α increased in sepsis, cytokine-induced neutrophil chemoattractant 2 increased in nephrectomized rats indicating that different inflammatory mediators were involved in the injury mechanism. Finally, pulmonary expression of multiple HSPs including HSP27-1, HSP70, HSP70-4, HSP70-8 and HSP90 was significantly different between the two conditions. Conclusions: We conclude that the pathophysiology of ARDS following ARF is distinct from that in sepsis. ARF-induced ARDS is characterized by a low level of cellular infiltration, induction of cytokine-induced neutrophil chemoattractant 2, and a discrete expression profile of HSPs.
ISSN:0025-7931
1423-0356
DOI:10.1159/000095588