Real Time Weed Detection using a Boosted Cascade of Simple Features

Weed detection is a crucial issue in precision agriculture. In computer vision, variety of techniques are developed to detect, identify and locate weeds in different cultures. In this article, we present a real-time new weed detection method, through an embedded monocular vision. Our approach is bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2016-12, Vol.6 (6), p.2755
Hauptverfasser: Tannouche, Adil, Sbai, Khalid, Rahmoune, Miloud, Agounoun, Rachid, Rahmani, Abdelhai, Rahmani, Abdelali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weed detection is a crucial issue in precision agriculture. In computer vision, variety of techniques are developed to detect, identify and locate weeds in different cultures. In this article, we present a real-time new weed detection method, through an embedded monocular vision. Our approach is based on the use of a cascade of discriminative classifiers formed by the Haar-like features. The quality of the results determines the validity of our approach, and opens the way to new horizons in weed detection.
ISSN:2088-8708
2088-8708
DOI:10.11591/ijece.v6i6.pp2755-2765