Land scene classification from remote sensing images using improved artificial bee colony optimization algorithm
The images obtained from remote sensing consist of background complexities and similarities among the objects that act as challenge during the classification of land scenes. Land scenes are utilized in various fields such as agriculture, urbanization, and disaster management, to detect the condition...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2024-02, Vol.14 (1), p.347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The images obtained from remote sensing consist of background complexities and similarities among the objects that act as challenge during the classification of land scenes. Land scenes are utilized in various fields such as agriculture, urbanization, and disaster management, to detect the condition of land surfaces and help to identify the suitability of the land surfaces for planting crops, and building construction. The existing methods help in the classification of land scenes through the images obtained from remote sensing technology, but the background complexities and presence of similar objects act as a barricade against providing better results. To overcome these issues, an improved artificial bee colony optimization algorithm with convolutional neural network (IABC-CNN) model is proposed to achieve better results in classifying the land scenes. The images are collected from aerial image dataset (AID), Northwestern Polytechnical University-Remote Sensing Image Scene 45 (NWPU-RESIS45), and University of California Merced (UCM) datasets. IABC effectively selects the best features from the extracted features using visual geometry group-16 (VGG-16). The selected features from the IABC are provided for the classification process using multiclass-support vector machine (MSVM). Results obtained from the proposed IABC-CNN achieves a better classification accuracy of 96.40% with an error rate 3.6%. |
---|---|
ISSN: | 2088-8708 2722-2578 |
DOI: | 10.11591/ijece.v14i1.pp347-357 |