Resource allocation for fog computing based on software-defined networks

With the emergence of cloud computing as a processing backbone for internet of thing (IoT), fog computing has been proposed as a solution for delay-sensitive applications. According to fog computing, this is done by placing computing servers near IoT. IoT networks are inherently very dynamic, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2023-12, Vol.13 (6), p.7099
Hauptverfasser: Nejad, Sepideh Sheikhi, Khademzadeh, Ahmad, Rahmani, Amir Masoud, Broumandnia, Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the emergence of cloud computing as a processing backbone for internet of thing (IoT), fog computing has been proposed as a solution for delay-sensitive applications. According to fog computing, this is done by placing computing servers near IoT. IoT networks are inherently very dynamic, and their topology and resources may be changed drastically in a short period. So, using the traditional networking paradigm to build their communication backbone, may lower network performance and higher network configuration convergence latency. So, it seems to be more beneficial to employ a software-defined network paradigm to implement their communication network. In software-defined networking (SDN), separating the network’s control and data forwarding plane makes it possible to manage the network in a centralized way. Managing a network using a centralized controller can make it more flexible and agile in response to any possible network topology and state changes. This paper presents a software-defined fog platform to host real-time applications in IoT. The effectiveness of the mechanism has been evaluated by conducting a series of simulations. The results of the simulations show that the proposed mechanism is able to find near to optimal solutions in a very lower execution time compared to the brute force method.
ISSN:2088-8708
2722-2578
DOI:10.11591/ijece.v13i6.pp7099-7107