Capacitor current analysis of a three-level neutral point clamped converter under unbalanced loading conditions
A neutral point clamped (NPC) converter is considered a forefront in industrial applications. Supplying a typically balanced stand-alone load is one of those applications. However, the loading may become unbalanced which can impact the capacitors’ current and voltage ripple. In this work, an approac...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2023-12, Vol.13 (6), p.6156 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A neutral point clamped (NPC) converter is considered a forefront in industrial applications. Supplying a typically balanced stand-alone load is one of those applications. However, the loading may become unbalanced which can impact the capacitors’ current and voltage ripple. In this work, an approach is proposed that analyze the capacitor current under unbalanced loading. The proposed method is based on a combination of two-dimensional Fourier series and symmetrical components. Since, two-dimensional Fourier series sectorize the spectrum into harmonics that are either defined by multiples of, fundamental, carrier or both frequencies, the method derives the Fourier coefficients for each sector, corresponding to a sequence current. Therefore, based on the presented approach, each harmonic amplitude in the spectrum sector is defined by three Fourier coefficients reflecting zero, positive and negative sequence current. The capacitor current spectrum is obtained by vector summing sequence coefficients. The method is tested on unbalanced load conditions with (out) a ground path. Results verify feasibility of the proposed method in deriving Fourier coefficients of capacitor currents that accurately reflects the loading status of the NPC. This is vital for converter design in terms of proper sizing of DC capacitor and can help in avoiding components failure. |
---|---|
ISSN: | 2088-8708 2722-2578 |
DOI: | 10.11591/ijece.v13i6.pp6156-6173 |