Analysis on the performance of reconfigurable intelligent surface-aided free-space optical link under atmospheric turbulence and pointing errors

Free-space optical (FSO) communication can provide the cost-efficient, secure, high data-rate communication links required for applications. For example, it provides broadband internet access and backhauling for the fifth-generation (5G) and the sixth-generation (6G) communication networks. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2023-08, Vol.13 (4), p.4204
Hauptverfasser: Ai, Duong Huu, Dang, Dai Tho, Anh Quang, Nguyen Vu, Nguyen, Van Loi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free-space optical (FSO) communication can provide the cost-efficient, secure, high data-rate communication links required for applications. For example, it provides broadband internet access and backhauling for the fifth-generation (5G) and the sixth-generation (6G) communication networks. However, previous solutions to deal with signal loss caused by obstructions and atmospheric turbulence. In these solutions, reconfigurable intelligent surfaces (RISs) are considered hardware technology to improve the performance of optical wireless communication systems. This study investigates the pointing error effects for RIS-aided FSO links under atmospheric turbulence channels. We analyze the performance of RIS-aided FSO links influenced by pointing errors, atmospheric attenuation, and turbulence for the subcarrier quadrature amplitude modulation (SC-QAM) technique. Atmospheric turbulence is modeled using log-normal distribution for weak atmospheric turbulence. Several numerical outcomes obtained for different transmitter beam waist radius and pointing error displacement standard deviation are shown to quantitatively illustrate the average symbol error rate (ASER).
ISSN:2088-8708
2722-2578
DOI:10.11591/ijece.v13i4.pp4204-4211