Abstract PR01: Mechanistic rationale to combine GITR agonism with PD-1 blockade in cancer patients
Immune checkpoint blockade has evidenced the therapeutic activity of modulating T-cell co-inhibition/co-stimulation processes. However, many patients are refractory to these therapies, highlighting the need for developing additional forms of immunotherapy targeting alternative immune pathways. In th...
Gespeichert in:
Veröffentlicht in: | Cancer immunology research 2019-02, Vol.7 (2_Supplement), p.PR01-PR01 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immune checkpoint blockade has evidenced the therapeutic activity of modulating T-cell co-inhibition/co-stimulation processes. However, many patients are refractory to these therapies, highlighting the need for developing additional forms of immunotherapy targeting alternative immune pathways. In this regard, the T-cell co-stimulatory receptor glucocorticoid-induced TNFR-related protein (GITR, TNFRSF18) is an attractive target for agonist antibodies (Abs). By promoting effector T-cell (Teff) function and hampering regulatory T-cell (Treg) suppression, GITR engagement may exert a dual positive effect on anti-tumor immune responses. We and others have reported potent antitumor effects of anti-GITR Abs in preclinical mouse models. Based on this rationale, we initiated the first-in-human phase-I trial of GITR stimulation with the GITR agonist monoclonal Ab (mAb) TRX518 (NCT01239134). TRX518 is a humanized aglycosylated IgG1κ mAb that binds and stimulates human GITR without engaging Fc effector functions. Here, we report the immune effects of a single ascending dose of TRX518 monotherapy in advanced cancer patients and provide mechanistic preclinical evidence to rationally combine GITR agonism with checkpoint blockade in future clinical trials. Analysis of peripheral blood mononuclear cells (PBMCs) from 37 advanced refractory solid cancer patients treated with >/= 0.005 mg/kg TRX518 (cohorts 3-9) revealed frequent reductions in circulating Tregs after treatment, with GITR+ Tregs and activated CD45RA-Foxp3hi effector Tregs (eTregs) being preferentially affected. In 8 patients for whom pre- and post-treatment PBMC samples and tumor biopsies were available, reductions in intratumor and circulating Tregs after TRX518 were positively correlated. However, coincident down-regulation of circulating and intratumor Tregs upon TRX518 was not sufficient to achieve a clinical benefit. To clarify the mechanisms underlying this outcome, we modeled tumor sensitivity and refractoriness to anti-GITR therapy by treating B16F10-melanoma-bearing mice with the mAb DTA-1 on day 4 (curative regimen, early tumors) or day 7 (refractory regimen, advanced/established tumors) after tumor implantation respectively. Time course analysis of T-cell infiltrates revealed that intratumor Tregs were significantly reduced and Teff:Treg ratios increased in both responding and refractory tumors. However, in responding tumors, Tregs completely failed to accumulate, suggesting that the presence of Treg |
---|---|
ISSN: | 2326-6066 2326-6074 |
DOI: | 10.1158/2326-6074.CRICIMTEATIAACR18-PR01 |