Abstract B25: Characterization, targeting, and modulation of carbonic anhydrase IX activity for the development of small-molecule inhibitors to treat triple-negative breast cancer

The microenvironment within a solid tumor is usually heterogeneous with certain regions being acidic and hypoxic. These acidic and hypoxic regions arise from rapidly proliferating cells combined with poor tumor perfusion. Cancer cells cope with these hostile changes in their microenvironment by expr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2016-08, Vol.76 (15_Supplement), p.B25-B25
Hauptverfasser: Mboge, Mam Y., Chen, Zhijuan, Mahon, Brian P., Lamas, Nicole, Tu, Shingkuang, Carta, Fabrizio, Superan, Claudiu T., McKenna, Robert, Frost, Susan C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microenvironment within a solid tumor is usually heterogeneous with certain regions being acidic and hypoxic. These acidic and hypoxic regions arise from rapidly proliferating cells combined with poor tumor perfusion. Cancer cells cope with these hostile changes in their microenvironment by expressing genes that are essential for survival. One of the coping mechanisms is an upregulation of pH regulatory factors, including carbonic anhydrase IX (CAIX). The action of CAIX helps to maintain physiological pH inside the cell (pHi) while regulating extracellular acidification (pHe). Extracellular acidification of the tumor microenvironment promotes local invasion, metastasis and decreases the effectiveness of adjuvant therapies, thus contributing to poor clinical outcome. Our goal was to compare the structure of a CAIX-mimic bound to ureidosulfonamide inhibitors with the biological activity of these inhibitors in a triple negative breast cancer cell line. CAIX is a reversible enzyme and at low pH (high proton concentration), the enzyme will consume protons, raising pH. Our hypothesis is that CAIX inhibition, in the context of an acidic microenvironment, will dysregulate its ability to maintain the acidic pH preferred by cancer cells which favors their growth and migration. In this study, we have shown the interaction of sulfonamide-based inhibitors using X-ray crystallography methods. These structures show the inhibitors make multiple contacts within the active site cavity. This is consistent with the inhibitor-induced decrease in CAIX activity measured as 18O exchange between H2O16 and H13C18O3 . We have also investigated the effect CAIX inhibition on cancer cell metabolism and extracellular acidification using Seahorse technology. This reveals that CAIX may contribute to the “non-glycolytic” acidification process. In total, these observations indicate that CAIX is a viable small molecular drug target and contribute to our understanding of the function of CAIX in modulating pH in cancer cells. Citation Format: Mam Y. Mboge, Zhijuan Chen, Brian P. Mahon, Nicole Lamas, Shingkuang Tu, Fabrizio Carta, Claudiu T. Superan, Robert McKenna, Susan C. Frost. Characterization, targeting, and modulation of carbonic anhydrase IX activity for the development of small-molecule inhibitors to treat triple-negative breast cancer. [abstract]. In: Proceedings of the AACR Special Conference: Function of Tumor Microenvironment in Cancer Progression; 2016 Jan 7–10; San Diego, CA.
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.TME16-B25