Abstract LB001: Encapsulation of IL-12 with an ultra pH-sensitive nanoparticle platform improves tolerability and promotes antitumor response in mice

Background: Interleukin-12 is a potent proinflammatory cytokine that proliferates and activates T cells, NK cells and differentiates Th1 cells. Translation of IL-12 for cancer treatment has been hindered by lethal toxicities due to cytokine release syndrome and there are currently no approved IL-12...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2023-04, Vol.83 (8_Supplement), p.LB001-LB001
Hauptverfasser: Su, Qingtai, Gutowski, Stephen, Kalashnikova, Irina, Burcham, Austin, Allu, Bhargavi, Chen, Zirong, Sun, Zhichen, Gao, Jinming, Han, Ruolan, Miller, Jason B., Zhao, Tian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Interleukin-12 is a potent proinflammatory cytokine that proliferates and activates T cells, NK cells and differentiates Th1 cells. Translation of IL-12 for cancer treatment has been hindered by lethal toxicities due to cytokine release syndrome and there are currently no approved IL-12 therapies. To minimize the severe toxicities while maintaining potency, we have developed ON-BOARD, an ultra-pH sensitive nanoparticle platform for masked and targeted delivery of payloads to the acidic tumor microenvironment. The clinical feasibility of ON-BOARD has been demonstrated by high tumor specificity of pegsitacianine in multiple tumor types from the Phase I and II clinical trials. Herein we report encapsulation and masked delivery of IL-12 to tumor-bearing mice using ON-BOARD, demonstrating significantly improved tolerability, anti-tumor efficacy, and potential for clinical translation. Methods: A mouse IL-12 fused with Fc was formulated in ON-BOARD nanoparticles. Particle properties were characterized and lead formulations were identified by in vitro screening to determine pH-mediated bioactivity in reporter and ELISA assays and stability in mouse plasma. In vivo studies were performed to compare the activity of unencapsulated IL-12 to ON-BOARD/IL-12 formulations. PD response was evaluated by measuring systemic cytokine levels in plasma, while clinical chemistry was performed to evaluate liver and kidney functions. Anti-tumor efficacy of ON-BOARD/IL-12 formulations was performed in mice bearing syngeneic MC38 colorectal cancer tumors compared to unencapsulated IL-12. Results: ON-BOARD/IL-12 formulations showed high encapsulation efficiency (>85%) and drug loading up to 20% wt. in uniformly distributed stable particles (Dh100-fold activation window between the acid-activated and intact formulations. Following incubation in mouse plasma the lead ON-BOARD formulations showed stable IL-12 encapsulation by an ELISA assay. In vivo, ON-BOARD/IL-12 formulations demonstrated significantly improved tolerability compared to unencapsulated IL-12. When dosed at 5µg/dose compared to unencapsulated protein at 1 µg/dose, ON-BOARD/IL-12 demonstrated reduced body weight loss (1,000-fold reduction in plasma IFNγ lev
ISSN:1538-7445
1538-7445
DOI:10.1158/1538-7445.AM2023-LB001