Abstract 6267: A novel and potent EZH1/2 dual inhibitor, HM97662 demonstrates antitumor activity in T-cell lymphoma

Chromatin remodeling is a crucial process for transcriptional regulation, of which dysregulation is often observed in various human cancers. The enhancer of zeste homology 2 (EZH2) and its homolog EZH1 are catalytic subunits of polycomb repressive complex 2 (PRC2), which trimethylate histone H3 at l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2023-04, Vol.83 (7_Supplement), p.6267-6267
Hauptverfasser: Byun, Jooyun, Jung, Seung Hyun, Kim, Yu-Yon, Lee, Miyoung, Lee, Gunwoo, Moon, Heesun, Lee, Eun Young, Park, Junghwa, Han, Seon Yeong, Ahn, Young Gil, Kim, Young Hoon, Suh, Kwee Hyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromatin remodeling is a crucial process for transcriptional regulation, of which dysregulation is often observed in various human cancers. The enhancer of zeste homology 2 (EZH2) and its homolog EZH1 are catalytic subunits of polycomb repressive complex 2 (PRC2), which trimethylate histone H3 at lysine 27 (H3K27me3) to repress transcription of its target genes. Although methlytransferase activity of PRC2 is mainly contributed by EZH2, EZH1 also conducts a compensatory role to maintain tri-methylation of H3K27. EZH1 also directly binds to chromatin and modulates its condensation. Recent studies have suggested that EZH1 as well as EZH2 played a critical role in T-cell lymphoma such as ATL/L and PTCL, which had high innate EZH1 and increased EZH2 expression upon acquisition of their malignancy. Consequently, dual inhibition of EZH1/2 might induce higher expression of downstream tumor suppressor genes than blocking EZH2 alone, expecting greater activity as an anti-cancer therapy. Herein, we presented a novel and potent EZH1/2 dual inhibitor, HM97662, which simultaneously inhibited the methyltransferase activity of both EZH1 and EZH2 with 2.1 and 16 nM of IC50, respectively. Surface plasmon resonance (SPR) assay verified that HM97662 had great binding affinity on EZH1-EED-SUZ12 complex as well as EZH2-EED-SUZ12 complex than competitors. HM97662 also showed broad and strong antiproliferative activity against various T-cell lymphoma cell lines. Representatively in HH cells, HM97662 not only suppressed global tri-methylation of H3K27, but also dose-dependently increased protein expression levels that modulate cell cycle or cancer cell apoptosis. HM97662 exhibited increment of CDKN1A (p21) proteins involved in cell cycle arrest and induced protein levels of cleaved caspase-3 as well as PARP. Additionally, resulting induction of apoptosis by HM97662 in HH cells was confirmed by TUNEL staining. Mechanistically, HM97662 increased mRNA expression of several target genes inducing cell cycle arrest and apoptosis in gene panel assay performed in HH cells. Two cell cycle repressor, CDKN2A (p16) and CDKN1C (p57), and a pro-apoptotic marker, BTG-2, were dose-dependently increased by HM97662. We further conducted chromatin accessibility assay and identified that the chromatin structures of them were loosened and highly transcribed after the treatment of HM97662. Based our in vitro pharmacology data, we evaluated an antitumor activity of HM97662 in EZH1/2 co-expressed HuT-10
ISSN:1538-7445
1538-7445
DOI:10.1158/1538-7445.AM2023-6267