Abstract 1857: Glioblastoma growth is suppressed dual inhibition of EGFR and CDK6 kinases
Glioblastoma (GBM) is a malignant brain tumor that has proven difficult to treat, despite expressing promising targets such as EGFRvIII. EGFRvIII, a mutant version of the epidermal growth factor receptor (EGFR), is constitutively active and not present in normal brain cells. The tumor specificity of...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2022-06, Vol.82 (12_Supplement), p.1857-1857 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma (GBM) is a malignant brain tumor that has proven difficult to treat, despite expressing promising targets such as EGFRvIII. EGFRvIII, a mutant version of the epidermal growth factor receptor (EGFR), is constitutively active and not present in normal brain cells. The tumor specificity of EGFRvIII and the frequent EGFR amplification seen in GBM make EGFR a potentially attractive therapeutic target; however, clinical studies have shown little to no efficacy for EGFR tyrosine kinase inhibitors (TKI). One reason for this lack of efficacy may be adaptive resistance. We used RNA sequencing and multiplexed inhibitor beads with mass spectrometry (MIB-MS) to study the transcriptomes and kinomes of genetically engineered mouse astrocytes to investigate this resistance and identify potential targets for dual inhibition. Out of 329 kinases detected by MIB-MS, 76 were differentially expressed between cells with Cdkn2a deletion (“C”) and cells that also overexpressed EGFRvIII (“CEv3”). Thirty-four of these kinases were overexpressed in the CEv3 cells relative to the parental C cells (log2 fold change of 5.6, p |
---|---|
ISSN: | 1538-7445 1538-7445 |
DOI: | 10.1158/1538-7445.AM2022-1857 |