Abstract 2716: P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression

Glioblastoma (GB) is an aggressive type of brain cancer with high mortality rate. It is a highly angiogenic tumor exhibiting an extremely invasive nature. As such, its brain microenvironment plays a crucial role in its progression. Microglia are the brain resident immune cells which have been shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2021-07, Vol.81 (13_Supplement), p.2716-2716
Hauptverfasser: Yeini, Eilam, Ofek, Paula, Pozzi, Sabina, Albeck, Nitzan, Ben-Shushan, Dikla, Tiram, Galia, Golan, Sapir, Kleiner, Ron, Sheinin, Ron, Reich-Zeliger, Shlomit, Grossman, Rachel, Ram, Zvi, Brem, Henry, Hyde, Thomas, Magod, Prerna, Friedmann-Morvinski, Dinorah, Madi, Asaf, Satchi-Fainaro, Ronit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma (GB) is an aggressive type of brain cancer with high mortality rate. It is a highly angiogenic tumor exhibiting an extremely invasive nature. As such, its brain microenvironment plays a crucial role in its progression. Microglia are the brain resident immune cells which have been shown to facilitate GB cell invasion and immune suppression. The mechanism by which GB cells alter microglia behavior is yet to be fully understood. One proposed mechanism involves adhesion molecules such as the Selectins family of proteins which are expressed on the surface of endothelial and immune cells and are involved in immune modulation and cancer immunity. We have previously shown that P-Selectin (SELP) is expressed by GB cells. Here, we investigated the factional role of SELP in GB-microglia interactions. First, we found that microglia cells facilitate the expression and secretion of SELP by GB cells, and that GB cells facilitate the expression of P-Selectin ligand by microglia. We then showed that SELP mediates microglia-enhanced GB invasion and proliferation in 2D and 3D in vitro models and has a role in microglia activation state. These findings were validated in vivo, showing that inhibition or downregulation of SELP leads to reduced tumor growth, increased overall survival and improved immune response. Single-Cells RNA-seq analysis of the tumors revealed an increase in pro-inflammatory microglia signature, reduction in cancer cell tumorigenesis potential and improved T cell activation. Our results indicated that SELP has an important role in GB progression and microenvironment activation. This work can improve our understanding of tumor-associated microglia function and the mechanisms by which GB cells suppress the immune system and invade the brain tissue. Citation Format: Eilam Yeini, Paula Ofek, Sabina Pozzi, Nitzan Albeck, Dikla Ben-Shushan, Galia Tiram, Sapir Golan, Ron Kleiner, Ron Sheinin, Shlomit Reich-Zeliger, Rachel Grossman, Zvi Ram, Henry Brem, Thomas Hyde, Prerna Magod, Dinorah Friedmann-Morvinski, Asaf Madi, Ronit Satchi-Fainaro. P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2716.
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2021-2716