Abstract 1875: Oxidative metabolism as a novel therapeutic target to eradicate T-ALL with mitochondrial complex I inhibitor IACS-010759

Adult T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with limited treatment options, largely driven by the activating Notch1 mutations. Oncogenic Notch1 facilitates c-Myc signaling and glutamine oxidation, induces metabolic stress and increased reliance on oxidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2018-07, Vol.78 (13_Supplement), p.1875-1875
Hauptverfasser: Baran, Natalia, Lodi, Alessia, Sweeney, Shannon, Kuruvilla, Vinitha Mary, Cavazos, Antonio, Skwarska, Anna, Velandy, Sriram Shanmuga, Harutyunyan, Karine, Feng, Ningping, Gay, Jason, Kaminski, Marcin, Jabbour, Elias J., Ferrando, Adolfo, Francesco, M. Emilia Di, Marszalek, Joseph R., Tiziani, Stefano, Konopleva, Marina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adult T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with limited treatment options, largely driven by the activating Notch1 mutations. Oncogenic Notch1 facilitates c-Myc signaling and glutamine oxidation, induces metabolic stress and increased reliance on oxidative metabolism maintained by AMPK and modulates metabolism under energy stress by mTOR (Kishton, Cell Metabolism 2016; Chan, Blood 2007). In this study, we report pre-clinical activity of the novel OXPHOS inhibitor (OXPHOSi) IACS-010759 in NOTCH-mutated T-ALL, and characterize the cellular and metabolic responses to OxPhos inhibition. Exposure to IACS-010759 (0-370 nM) in vitro for 5 days drastically reduced T-ALL viability, with EC50 ranging from 0.001-10 nM for T-ALL cell lines and 13-45 nM for T-ALL PDX models (n=5). Oral administration of IACS-010759 at 7.5 mg/kg daily was tolerable in both, aggressive T-ALL PDX and in Notch-1 mutated murine T-ALL model, significantly reduced leukemia burden and extended survival. Functional metabolic characterization of T-ALL confirmed that IACS-010759 effectively inhibited mitochondrial respiration and caused striking dose-dependent decrease in basal and maximal OCR, ATP and NADH production. Pharmacological inhibition of Complex I with IACS-010759, similar to knockout of Complex I subunit NDUSF4 using CRISPR-CAS9, induced catastrophic changes in mitochondria, with induction of ROS, DNA damage and compensatory mTOR pathway activation. Further, OXPHOSi led to downregulation of mitochondrial Complex I, II, III and IV, decrease of wide range of TCA cycle enzymes and proteins involved in the mitochondrial transport. This translated into decrease of TCA cycle intermediates and reduction in ATP and NADH content by metabolomic analysis. Using stable isotope-resolved metabolomics (SIRM) flux analysis, IACS-010759 (30 nM at 24 hr) significantly decreased flux of glucose through the TCA cycle and redirected it towards glycolysis, additionally increased utilization of glutamine for fueling the TCA cycle, in particular through reductive metabolism, uncovering reliance on glutaminolysis as an additional therapeutic target. Consistent with this hypothesis, combined therapy of OXPHOSi with Glutaminase (GLS-i) or mTOR inhibitors caused additive or synergistic reduction of viability of T-ALL cells, and elicited anti-leukemia activity in T-ALL resistant to Complex I inhibitor alone. Ongoing in vivo studies will address the impact of Complex
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2018-1875