Abstract 48: Non-clinical pharmacokinetics of XMT-1522, a HER2 targeting auristatin-based antibody drug conjugate
The ADC XMT-1522 consists of a novel human IgG1 anti-HER2 monoclonal antibody and a novel, auristatin-based cytotoxic payload (Auristatin F-hydroxypropylamide, AF-HPA). An average DAR of 12 AF-HPA molecules is achieved via a biodegradable polymer conjugation platform. The non-clinical DMPK propertie...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2017-07, Vol.77 (13_Supplement), p.48-48 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ADC XMT-1522 consists of a novel human IgG1 anti-HER2 monoclonal antibody and a novel, auristatin-based cytotoxic payload (Auristatin F-hydroxypropylamide, AF-HPA). An average DAR of 12 AF-HPA molecules is achieved via a biodegradable polymer conjugation platform. The non-clinical DMPK properties of XMT-1522 have been characterized in vitro in plasma and microsomal stability studies, and in vivo in plasma and tissue disposition and excretion studies. Sample analysis for total AF-HPA drug payload and released (free) AF-HPA and its metabolites was performed by ESI+ LC/MS/MS; total antibody was determined by ELISA. The half-life for AF-HPA release in plasma was found to be greater than 120 hours in all species tested. Microsomal stability studies showed that AF-HPA was further converted to other metabolites including the carboxylic acid auristatin F (AF), as well as monomethyl auristatin F-HPA (MMAF-HPA) and MMAF. The pharmacokinetic profiles of XMT-1522 were evaluated in mouse, rat and cynomolgus monkey. The antibody of XMT-1522 is cross-reactive with monkey, but not rodent, HER2. In mouse and rat, XMT-1522 exposure was dose-proportional; exposure was slightly greater than dose-proportional in monkey consistent with saturation of target-mediated clearance. All species showed extended exposure to total AF-HPA drug payload, with measured clearance and volume of distribution similar for total AF-HPA and the antibody component of XMT-1522. Exposure to free AF-HPA and AF was less than 1/1000th the exposure of total AF-HPA. These data indicate the vast majority of AF-HPA in plasma is antibody-conjugated, indicating high stability of the ADC in systemic circulation. XMT-1522 tissue disposition was studied in NCI-N87 HER2-positive gastric cancer xenograft tumor bearing mice. After a single 3 mg/kg dose of XMT-1522, free AF-HPA and its metabolite AF were measurable in tumor tissue until the last time point measured (2 weeks). Total AF-HPA and free AF-HPA achieved peak tumor concentrations 48 hours after dosing. In contrast, AF achieved peak tumor concentration 7 days after dosing and showed only a slight decline in tumor concentration at 14 days, consistent with intracellular trapping of this poorly cell-permeable metabolite. Exposure to free AF-HPA or AF in other tissues was at least an order of magnitude lower than in tumor; in tissues with measurable free drug, AF was the predominant species. XMT-1522 excretion studies, conducted in rat, indicated that the AF- |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/1538-7445.AM2017-48 |