Abstract 3653: Combining ERY974, a novel T cell-redirecting bispecific antibody targeting glypican-3, with chemotherapy profoundly improved antitumor efficacy over its monotherapy in xenograft model

Background: ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody (TRAB) currently in Phase 1 clinical trial (NCT02748837). ERY974 consists of a common light chain and two different heavy chains that respectively recognize glypican-3 (GPC3) and CD3. The Fc portion of ERY974 is modified t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-07, Vol.77 (13_Supplement), p.3653-3653
Hauptverfasser: Sano, Yuji, Azuma, Yumiko, Tsunenari, Toshiaki, Kinoshita, Yasuko, Kayukawa, Yoko, Mutoh, Hironori, Miyazaki, Yoko, Ishiguro, Takahiro, Kishishita, Shohei, Kawabe, Yoshiki, Endo, Mika
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody (TRAB) currently in Phase 1 clinical trial (NCT02748837). ERY974 consists of a common light chain and two different heavy chains that respectively recognize glypican-3 (GPC3) and CD3. The Fc portion of ERY974 is modified to lose FcγR binding to prevent GPC3-independent Fc-mediated effector function. However, binding activity to FcRn, an important factor in the PK profile of IgG, is maintained. ERY974 simultaneously binds to GPC3 on the cancer cell surface and to CD3 on the T cell surface, and induces TRAB-dependent cellular cytotoxicity mediated by the potent effector function of T cells. ERY974 shows strong antitumor activity against gastric, lung, ovarian, head & neck, and esophageal cancer-derived xenograft tumors in a non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mouse model injected with human T cells. Cancer immunotherapy, as represented by immune checkpoint inhibitors such as PD-1, PD-L1, and CTLA-4 antibodies, has recently been demonstrating remarkable clinical benefit in various tumor types. However, the number of patients who have survival benefit is limited, and combining cancer immunotherapy with other agents is required to improve the efficacy. Although ERY974 monotherapy is expected to show clinical activity based on the preclinical data, we examined whether further improvement of ERY974-induced efficacy is attained by combination with chemotherapy. Method & Results: We evaluated the combination effect of ERY974 with chemotherapy against xenograft tumors of MKN45 (gastric cancer) or NCI-H446 (lung cancer) either in a NOD-SCID mouse model injected with human T cells or in a humanized non-obese diabetic/shi-scid/IL-2Rγnull model in which differentiated human T cells are constitutively supplied. Although ERY974 monotherapy shows only minor antitumor effect against MKN45 and NCI-H446, combination therapy remarkably enhanced efficacy. In particular, ERY974 in combination with paclitaxel or cisplatin in NCI-H446 tumors caused a tumor disappearance without regrowth for a long period. Conclusion: These preclinical data suggest the possibility that the strategy of combining ERY974 with chemotherapy may succeed in increasing the clinical benefit. Now the combination effect is being further investigated to clarify the mechanism. Citation Format: Yuji Sano, Yumiko Azuma, Toshiaki Tsunenari, Yasuko Kinoshita, Yoko Kayukawa, Hironori Mutoh, Yoko Miyazaki, Takahir
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2017-3653