Abstract 140: Discovery and biological evaluation of PQR530, a highly potent dual pan-PI3K/mTORC1/2 inhibitor

The PI3K/AKT/mTOR signaling pathway plays a fundamental role in cell proliferation, growth and survival and aberrant activation of this signaling pathway has been shown to drive the progression of malignant tumors.[1] Drugs targeting the pathway at multiple points, such as dual PI3K/mTOR inhibitors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-07, Vol.77 (13_Supplement), p.140-140
Hauptverfasser: Rageot, Denise, Beaufils, Florent, Melone, Anna, Sele, Alexander M., Bohnacker, Thomas, Lang, Marc, Mestan, Jürgen, Hillmann, Petra, Hebeisen, Paul, Fabbro, Doriano, Wymann, Matthias P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The PI3K/AKT/mTOR signaling pathway plays a fundamental role in cell proliferation, growth and survival and aberrant activation of this signaling pathway has been shown to drive the progression of malignant tumors.[1] Drugs targeting the pathway at multiple points, such as dual PI3K/mTOR inhibitors appear to have the broadest activity profile to address cancer therapeutic strategies and are currently being explored in numerous clinical studies. Recently, we presented PQR309, a novel, brain-penetrant pan-PI3K/mTOR inhibitor, which entered phase II clinical trials in 2016.[2] Here, we report the lead optimization of PQR530, a potent and brain-penetrant follow-up compound as pan-PI3K/mTORC1/2 inhibitor. The development of a follow-up compound concentrated on the improvement of both, the potency and the selectivity for all targeted kinases, namely the class IA PI3K isoforms as well as mTOR. We present a detailed ligand-based structure-activity relationship study which was obtained by systematic modifications of the hinge region as well as the affinity binding substituents. This study led to the identification of PQR530, a dual pan-PI3K/mTORC1/2 inhibitor showing excellent activities in cellular assays as well as in PI3Kα and mTOR enzymatic binding assays. In A2058 melanoma cells PQR530 inhibited protein kinase B (PKB, pSer473) and ribosomal protein S6 (pS6, pSer235/236) phosphorylation with IC50 values of 0.07 µM. PQR530 showed excellent selectivity over a wide panel of kinases, as well as excellent selectivity versus unrelated receptor enzymes and ion channels. Moreover, PQR530 displayed potency in a panel of 44 cancer cell lines (NTRC OncolinesTM) to prevent cancer cell growth (mean value for GI50 of 426 nM). Oral application of PQR530 to mice resulted in a dose-proportional PK and demonstrated good oral bioavailability and excellent brain penetration.[3] An optimized, robust synthetic route allowed rapid access to multi-gram quantities of PQR530 for pre-clinical development in only 4 steps. In conclusion, PQR530 inhibits all PI3K isoforms and the mammalian target of rapamycin (mTOR) complexes C1/2 potently and selectively, and shows anti-tumor effects in vitro and in vivo. [1] M. P. Wymann, M. Zvelebil, M. Laffargue (2003). Phosphoinositide 3-kinase signalling – which way to target? Trends Pharmacol Sci.; 24, 366-376. [2] V. Cmiljanovic et. al. “PQR309: Structure-Based Design, Synthesis and Biological Evaluation of a Novel, Selective, Dual Pan-PI3K/mTOR Inh
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2017-140