Abstract 868: Creating a superior, site-specific anti-HER2 antibody-drug conjugate (NG-HER2 ADC) for treatment of solid tumors
Antibody-drug conjugates (ADCs) have emerged as an important class of cancer therapeutics. The FDA approval of Kadcyla (T-DM1), a single agent for treatment of HER2-positive advanced metastatic breast cancer, was a significant milestone in the field of targeted therapy, as the first and only ADC for...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2016-07, Vol.76 (14_Supplement), p.868-868 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antibody-drug conjugates (ADCs) have emerged as an important class of cancer therapeutics. The FDA approval of Kadcyla (T-DM1), a single agent for treatment of HER2-positive advanced metastatic breast cancer, was a significant milestone in the field of targeted therapy, as the first and only ADC for treatment of solid tumors. Despite the 3-month improvement over standard of care in the median survival, almost all the patients eventually became refractory to T-DM1. We have identified several possible areas for improvement: 1) The potency of T-DM1 as confirmed by the Phase III clinical data is restricted to high HER2 tumors which leaves moderate or low HER2 expressing patients without access to T-DM1 treatment; 2) The 48% overall response rate is indicative of intrinsic resistance to T-DM1 and all T-DM1 treated patients eventually relapse. 3) The randomized lysine conjugation in T-DM1 generates heterogeneity of the product. We have developed a novel, site-specific anti-HER2 ADC (NG-HER2 ADC) and evaluated it in comparative preclinical studies with T-DM1. The results show that the NG-HER2 ADC is ∼ 10 fold more potent than T-DM1 in HER2 3+ xenograft models of breast and gastric cancers. Our proprietary cleavable and permeable linker-payload can mediate bystander effect and this enables potent anti-tumor activity in non-HER2 amplified breast cancer and heterogeneous low HER2 NSCLC PDX models, where T-DM1 is ineffective. Our ADC can overcome T-DM1 resistance in in vitro and in vivo models.. Our site-specific ADC at HNSTD of 9 mg/kg in cynomolgus monkeys showed high AUC, long half-life and had normal clinical observations with no marked neutropenia. On the contrary, conventional conjugates with cleavable linker payloads typically have severe bone marrow toxicity as DLT above 5 mg/kg. The therapeutic index for NG-HER2 ADC is significantly greater than T-DM1 in all models tested. NG-HER2 ADC has a projected clinical efficacious dose of ∼1 mg/kg, compared to 3-5 mg/kg for T-DM1, based on PK/PD modeling. In addition, the activity of the NG-HER2 ADC shows increased infiltration of CD8 positive effector cells, an essential component for immuno-oncology (IO) efficacy, in a syngeneic HER2 overexpressing model. This property potentially allows the combination of the ADC with IO drugs to improve the long-term, overall survival. Our data provides preclinical proof of concept for NG-HER2 ADC with best-in-class potential and is currently being tested in preparation for clinic |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/1538-7445.AM2016-868 |