Abstract 3070: Potent and selective inhibition of CDK7 by novel covalent inhibitors
Background: Phosphorylation of the RNA polymerase II (RNAPII) in C-terminal domain (CTD) by Cyclin-dependent kinase 7 (CDK7) is an important step in cellular transcription process. Hence pharmacological modulation of CDK7 kinase activity is considered as an interesting approach to treat cancers that...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2016-07, Vol.76 (14_Supplement), p.3070-3070 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Phosphorylation of the RNA polymerase II (RNAPII) in C-terminal domain (CTD) by Cyclin-dependent kinase 7 (CDK7) is an important step in cellular transcription process. Hence pharmacological modulation of CDK7 kinase activity is considered as an interesting approach to treat cancers that critically dependent on transcription to maintain their oncogenic state.
Experimental procedures: Multiple series of novel covalent CDK7 inhibitors were identified by SBDD approach based on the binding mode of known CDK7 inhibitors to find early hits. Iterative medicinal chemistry efforts were performed to identify several lead compounds by optimizing the initial hits to achieve good physicochemical properties, high potency, good selectivity and desirable pharmacokinetic profile.
Summary: Highly potent ATP competitive covalent inhibitors of CDK7 from two distinct chemical series were identified. They show time-dependent inhibition of CDK7 enzyme activity as a proof of covalent binding and exhibit potent anti-proliferative activity in cell lines derived from various tumor types. CDK7 modulation by these compounds was also confirmed by monitoring cellular pS5RNAPII levels. Representative compounds from each series showed very good selectivity profile in broad kinase (332) panel. Lead molecules were identified based on excellent drug-like properties (solubility, permeability and good oral bioavailability). Tolerability and efficacy studies in rodent xenograft models are ongoing with selected leads to test their impact on tumor growth inhibition and to determine therapeutic window by oral administration.
Conclusion: We have identified novel and selective CDK7 covalent inhibitors from two distinct chemical series with optimized drug-like properties including oral bioavailability. These compounds are being evaluated
for anti-tumor activity in mouse xenograft models.
Citation Format: Leena Khare Satyam, Ramulu Poddutoori, Subhendu Mukherjee, Sivapriya Marappan, Sreevalsam Gopinath, Raghuveer Ramachandra, Manoj Kumar Pothuganti, Shilpa S. Nayak, Nandish C, Chandranath Naik, Ravindra MV, Madhu B. Dabbeeru, Nagaraju A, Mahankali B, Thomas Antony, Chetan Pandit, Shekar Chelur, Girish Daginakatte, Susanta Samajdar, Murali Ramachandra. Potent and selective inhibition of CDK7 by novel covalent inhibitors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Re |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/1538-7445.AM2016-3070 |