Ranked solutions of the matric equation A 1 X 1 = A 2 X 2

Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 1980-01, Vol.3 (2), p.293-304
Hauptverfasser: Porter, A. Duane, Mousouris, Nick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 293
container_title International journal of mathematics and mathematical sciences
container_volume 3
creator Porter, A. Duane
Mousouris, Nick
description Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is m × t of rank k 1 , and X 2 is n × t of rank k 2 . These results are then used to find the number of solutions X 1 , …, X n , Y 1 , …, Y m , m , n > 1, of the matric equation A 1 X 1 … X n = A 2 Y 1 … Y m .
doi_str_mv 10.1155/S016117128000021X
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_S016117128000021X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_S016117128000021X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c90X-690f6314d68c5422a3cda3dab02bcbde05361066f915b640dafcbf01c9297df13</originalsourceid><addsrcrecordid>eNplT81KxDAYDKJgXX0Ab3mB6Pd9adLm4GFZ1BUWBN1DbyXND1Z3t5p0D769LXpzYJhhBgaGsWuEG0Slbl8BNWKFVMMEwuaEFajrSkBJ6pQVcy3m_pxd5PwOgDWRKph5sYeP4HkedsexHw6ZD5GPb4Hv7Zh6x8PX0c45X3LkzcS7ydHk6JKdRbvL4epPF2z7cL9drcXm-fFptdwIZ6AR2kDUEkuva6dKIiudt9LbDqhznQ-gpEbQOhpUnS7B2-i6COgMmcpHlAuGv7MuDTmnENvP1O9t-m4R2vl6---6_AF7X0h2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ranked solutions of the matric equation A 1 X 1 = A 2 X 2</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Porter, A. Duane ; Mousouris, Nick</creator><creatorcontrib>Porter, A. Duane ; Mousouris, Nick</creatorcontrib><description>Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is m × t of rank k 1 , and X 2 is n × t of rank k 2 . These results are then used to find the number of solutions X 1 , …, X n , Y 1 , …, Y m , m , n &gt; 1, of the matric equation A 1 X 1 … X n = A 2 Y 1 … Y m .</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S016117128000021X</identifier><language>eng</language><ispartof>International journal of mathematics and mathematical sciences, 1980-01, Vol.3 (2), p.293-304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c90X-690f6314d68c5422a3cda3dab02bcbde05361066f915b640dafcbf01c9297df13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Porter, A. Duane</creatorcontrib><creatorcontrib>Mousouris, Nick</creatorcontrib><title>Ranked solutions of the matric equation A 1 X 1 = A 2 X 2</title><title>International journal of mathematics and mathematical sciences</title><description>Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is m × t of rank k 1 , and X 2 is n × t of rank k 2 . These results are then used to find the number of solutions X 1 , …, X n , Y 1 , …, Y m , m , n &gt; 1, of the matric equation A 1 X 1 … X n = A 2 Y 1 … Y m .</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNplT81KxDAYDKJgXX0Ab3mB6Pd9adLm4GFZ1BUWBN1DbyXND1Z3t5p0D769LXpzYJhhBgaGsWuEG0Slbl8BNWKFVMMEwuaEFajrSkBJ6pQVcy3m_pxd5PwOgDWRKph5sYeP4HkedsexHw6ZD5GPb4Hv7Zh6x8PX0c45X3LkzcS7ydHk6JKdRbvL4epPF2z7cL9drcXm-fFptdwIZ6AR2kDUEkuva6dKIiudt9LbDqhznQ-gpEbQOhpUnS7B2-i6COgMmcpHlAuGv7MuDTmnENvP1O9t-m4R2vl6---6_AF7X0h2</recordid><startdate>198001</startdate><enddate>198001</enddate><creator>Porter, A. Duane</creator><creator>Mousouris, Nick</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198001</creationdate><title>Ranked solutions of the matric equation A 1 X 1 = A 2 X 2</title><author>Porter, A. Duane ; Mousouris, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c90X-690f6314d68c5422a3cda3dab02bcbde05361066f915b640dafcbf01c9297df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porter, A. Duane</creatorcontrib><creatorcontrib>Mousouris, Nick</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porter, A. Duane</au><au>Mousouris, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranked solutions of the matric equation A 1 X 1 = A 2 X 2</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>1980-01</date><risdate>1980</risdate><volume>3</volume><issue>2</issue><spage>293</spage><epage>304</epage><pages>293-304</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is m × t of rank k 1 , and X 2 is n × t of rank k 2 . These results are then used to find the number of solutions X 1 , …, X n , Y 1 , …, Y m , m , n &gt; 1, of the matric equation A 1 X 1 … X n = A 2 Y 1 … Y m .</abstract><doi>10.1155/S016117128000021X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 1980-01, Vol.3 (2), p.293-304
issn 0161-1712
1687-0425
language eng
recordid cdi_crossref_primary_10_1155_S016117128000021X
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Ranked solutions of the matric equation A 1 X 1 = A 2 X 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranked%20solutions%20of%20the%20matric%20equation%20A%201%20X%201%20=%20A%202%20X%202&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Porter,%20A.%20Duane&rft.date=1980-01&rft.volume=3&rft.issue=2&rft.spage=293&rft.epage=304&rft.pages=293-304&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S016117128000021X&rft_dat=%3Ccrossref%3E10_1155_S016117128000021X%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true