Ranked solutions of the matric equation A 1 X 1 = A 2 X 2
Let G F ( p z ) denote the finite field of p z elements. Let A 1 be s × m of rank r 1 and A 2 be s × n of rank r 2 with elements from G F ( p z ). In this paper, formulas are given for finding the number of X 1 , X 2 over G F ( p z ) which satisfy the matric equation A 1 X 1 = A 2 X 2 , where X 1 is...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 1980-01, Vol.3 (2), p.293-304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
F
(
p
z
) denote the finite field of
p
z
elements. Let
A
1
be
s
×
m
of rank
r
1
and
A
2
be
s
×
n
of rank
r
2
with elements from
G
F
(
p
z
). In this paper, formulas are given for finding the number of
X
1
,
X
2
over
G
F
(
p
z
) which satisfy the matric equation
A
1
X
1
=
A
2
X
2
, where
X
1
is
m
×
t
of rank
k
1
, and
X
2
is
n
×
t
of rank
k
2
. These results are then used to find the number of solutions
X
1
, …,
X
n
,
Y
1
, …,
Y
m
,
m
,
n
> 1, of the matric equation
A
1
X
1
…
X
n
=
A
2
Y
1
…
Y
m
. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/S016117128000021X |