Reducing Subspaces for Toeplitz Operator T z 1 k 1 z 2 k 2 + a z ¯ 1 l 1 z ¯ 2 l 2 on the Weighted Hardy Space over the Bidisk
In this paper, we completely characterize the reducing subspaces for T φ a on weighted Hardy space ℋ ω 2 D 2 under three assumptions on ω , where φ a = z k + a z ¯ l , k , l ∈ ℕ 2 , k ≠ l , and a ∈ 0,1 . It is shown that the coefficient a ∈ 0,1 does not affect the reducing subspaces for T φ a . We...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2022-03, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we completely characterize the reducing subspaces for
T
φ
a
on weighted Hardy space
ℋ
ω
2
D
2
under three assumptions on
ω
, where
φ
a
=
z
k
+
a
z
¯
l
,
k
,
l
∈
ℕ
2
,
k
≠
l
, and
a
∈
0,1
. It is shown that the coefficient
a
∈
0,1
does not affect the reducing subspaces for
T
φ
a
. We also prove that, for every
δ
>
0
, weighted Dirichlet space
D
δ
2
D
2
is a weighted Hardy space which satisfies these assumptions. As an application, we describe the reducing subspaces for
T
φ
a
on
D
δ
2
D
2
and get the structure of commutant algebra
V
∗
T
φ
a
. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2022/4288928 |