Critical Dynamic Stress and Accumulative Deformation Evolution of Embankment Silty Clay Subjected to Cyclic Freeze-Thaw

In cold regions, the permanent settlement of embankment is mainly caused by the repeated freeze-thaw process and long-term repeated train loads. Meanwhile, the critical dynamic stress (σdcr) is an important parameter index for determining embankment stability. Therefore, the accumulative permanent d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2021, Vol.2021 (1)
Hauptverfasser: Wang, Lina, Weng, Zhiyu, Wang, Tianliang, Liu, Qiang, Li, Guoyu, Zhao, Yingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In cold regions, the permanent settlement of embankment is mainly caused by the repeated freeze-thaw process and long-term repeated train loads. Meanwhile, the critical dynamic stress (σdcr) is an important parameter index for determining embankment stability. Therefore, the accumulative permanent deformation evolution and critical dynamic stress of embankment soil subjected to cyclic freeze-thaw were studied using dynamic triaxial tests. Firstly, a numerical model for calculating critical dynamic stress considering the repeated freeze-thaw process was proposed, which shows that the critical dynamic stress of embankment soil rapidly decreases in the first two repeated freeze-thaw cycles, whereas it tends to be stable after the subsequent freeze-thaw process. Next, based on the normalization of the critical dynamic stress, an explicit model for predicting accumulative plastic strain (εp) of embankment soil was established. The above model considers freeze-thaw times, repeated dynamic stress amplitude (σd), and loading times, in which all material parameters of Qinghai-Tibet silty clay were presented. Thus, the critical dynamic stress and accumulative plastic strain models established in this paper can be applied to judge the embankment stability and predict the embankment settlement induced by train loads in cold regions.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/9068254